
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2018; 48:8,1461–1474
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.2583

A microservice-based architecture for
(customisable) analyses of Docker images

Antonio Brogi, Davide Neri, Jacopo Soldani

Department of Computer Science, University of Pisa, Italy. name.surname@di.unipi.it

SUMMARY

We introduce DOCKERANALYSER, a microservice-based tool that permits building customised analysers
of Docker images. The architecture of DOCKERANALYSER is designed to crawl Docker images from a
remote Docker registry, to analyse each image by running an analysis function, and to store the results
into a local database. Users can build their own image analysers by instantiating DOCKERANALYSER with
a custom analysis function and by configuring the architecture. More precisely, the steps needed to obtain
new analysers are: (i) replacing the analysis function used to analyse crawled Docker images, (ii) setting
the policy for crawling Docker images, and (iii) setting the scalability options for obtaining a scalable
architecture. In this paper, we also present two different use cases, i.e., two different analysers of Docker
images created by instantiating DOCKERANALYSER with two different analysis functions and configuration
options. The two use cases show that DOCKERANALYSER decreases the effort required to obtain new
analysers versus building them from scratch.
Copyright c© 2018 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Docker; Microservices; Container

1. INTRODUCTION

Container-based virtualisation [23, 24] has gained significant acceptance, because it provides
a lightweight solution for running multiple isolated user-space instances (called containers).
Such instances are particularly suited to package, deploy and manage complex, multi-component
applications [3]. Developers can bundle application components along with the dependencies they
need to run in isolated containers and execute them on top of a container run time (e.g., Docker [10],
Rkt [7], Dynos [20]). Compared to previous existing virtualisation approaches, like virtual
machines, the use of containers features faster start-up times and less overhead [22].

The current de-facto standard technology for container-based virtualization is Docker [29, 9],
a platform for building, shipping, and running applications inside portable containers. Docker
containers run from Docker images, which are the read-only templates used to create them. A
Docker image permits packaging a software component together with all the software dependencies
needed to run it (e.g., libraries, binaries). In addition, Docker provides the ability to distribute and
search (images of) containers that were created by other developers through Docker registries. Given
that any developer can create and distribute its own created images through Docker registries, other
users have at their disposal plentiful repositories of heterogeneous, ready-to-use images. In this
scenario, public registries (such as the official Docker Hub [12]) are playing a central role in the
distribution of images [13].

However, images stored in Docker registries are described by fixed attributes (e.g., name,
description, owner of the image), and this makes it difficult for users to analyse and select the
images satisfying their needs. Also, needs may differ from user to user, depending on the actual

Copyright c© 2018 John Wiley & Sons, Ltd.
Submitted draft. Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2

exploitation of Docker images they wish to carry out. For instance, a developer may want to deploy
her application on a Docker image supporting precise software distributions (e.g., Python 2.7 and
Java 1.8), an end-user may want to assign custom tags to her images in order to ease their retrieval,
or a data scientist may wish to analyse images to discover interesting, recurring patterns.

Currently, a support for performing analyses on large set of Docker images is missing. Users
are required to manually check whether an image satisfies their needs by looking at the attributes
provided by the Docker registry or on the image features by running it in a container.

In this paper, we present DOCKERANALYSER, a tool that permits building customised analysers
of Docker images. Users can create their own Docker image analysers by simply instantiating
DOCKERANALYSER with a user-defined analysis function that produces descriptions of Docker
images. The analysis function can be any Python code that, given the name of a Docker image,
scans such image to extract some metadata that are used to generate the description of the
image. DOCKERANALYSER is designed to provide a scalable architecture for running the analysis
function provided by the users on large set of Docker images in a fully automated way. Users
are only required to provide the analysis function, while DOCKERANALYSER provides the other
functionalities for crawling Docker images from a Docker registry, running the analysis function on
each image, storing the results of the analysis function in a local storage, and allowing to query the
storage through a RESTful API.

To illustrate this, we implemented two different analysers of Docker images, namely DOCKER-
FINDER and DOCKERGRAPH.

• DOCKERFINDER collects the software distributions supported by an image, and it permits
searching for images supporting such software distributions. For instance, if a developer
wishes to package her application into a Docker image satisfying certain software
requirements (e.g. Python 2.7 and Java 1.8), she can query DOCKERFINDER and select the
image that best satisfies such requirements.

• DOCKERGRAPH creates a directed graph whose nodes are names of (repositories of) Docker
images, and whose arcs connect each image i to its parent image (viz., the image that has
been used as the basis to create i), if any. Many applications can take advantage of the graph
created by DOCKERGRAPH. For instance, if a parent image is affected by a security flaw,
DOCKERGRAPH can be used for retrieving all the images that are built starting from such
image.

We deployed both DOCKERGRAPH and DOCKERFINDER as multi-container Docker applications
where the microservices of the analysers run inside Docker containers.

We chose to implement DOCKERANALYSER as a suite of interacting microservices mainly
because of the configurability properties of microservice-based architectures [17, 28]. For instance,
replaceability in a microservice-based architecture allows replacing a microservice with another
offering the same interface, without affecting any of the other microservices composing the
architecture [28]. In DOCKERANALYSER, replaceability allows obtaining different analysers by
just changing the actual implementation of the microservice running the analysis function. We
illustrate this by showing how DOCKERFINDER and DOCKERGRAPH are built by changing the
implementation of such microservice.

This paper is an extended version of [5]. [5] describes a tool that analyses Docker images by
executing a fixed analysis function. DOCKERANALYSER is a generalisation of that in [5], and such
generalisation permits customising the analysis function executed by the architecture in order to
create different analysers of Docker images.

The rest of the paper is organised as follows. Sect. 2 describes the microservice-based architecture
of DOCKERANALYSER. Sect. 3 introduces the DOCKERANALYSER tool. Sect. 4 presents two
use cases of analysers of Docker images (DOCKERFINDER and DOCKERGRAPH) obtained by
customising the analysis function of DOCKERANALYSER. Sect. 5 discusses related work. Sect. 6
draws some conclusions.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

3

2. DOCKERANALYSER ARCHITECTURE

The objective of DOCKERANALYSER (Fig. 1) is to permit building analysers of Docker images. A
new analyser of Docker images can be created by instantiating DOCKERANALYSER with a different
analysis function (contained in the deploy package). We implemented DOCKERANALYSER as a
suite of interacting microservices.

• Analysis. DOCKERANALYSER crawls and analyses each image contained in the Docker
registry it is connected to. The analysis of the images is performed by running the analysis
function provided by the user.

• Storage. DOCKERANALYSER stores all produced image descriptions into a local storage. The
storage is then made accessible to external users through a RESTful API.

Figure 1. Microservice-based architecture of DOCKERANALYSER.

We now detail the microservices composing the architecture of DOCKERANALYSER (Fig. 1).
We separately discuss the microservices in the analysis group (Sect. 2.1) and those in the storage
(Sect. 2.2) group.

2.1. Microservices in the Analysis group

As illustrated in Fig. 1, the analysis is carried out by a Crawler, a Message Broker, and (one or
more) Scanners.

Crawler. The Crawler crawls the Docker images to be analysed from a remote Docker registry. More
precisely, the Crawler crawls the names of the images from the registry, and it passes such names
to the Message Broker. The Crawler can be configured by the users to implement two different
crawling policies: randomly or sequentially. The former permits crawling a random sample of
images, while the latter permits crawling all the images sequentially. In both cases, the total number
of images to be crawled can be configured.

Message Broker. A message broker is an intermediary service whose purpose is to take incoming
messages from one or multiple sources, to process such messages, and to route them to one or more
destinations [6]. The Message Broker of DOCKERANALYSER receives the names of the images to
be analysed (from the Crawler), it stores them into a messages queue, and it permits the Scanners
to retrieve them. The goal of the Message Broker is to decouple the Crawler from the Scanners.

Scanner. The Scanner retrieves the name of the images from the Message Broker, and for each name
received it runs the analysis function. More precisely, given a user-defined function analysis, each
Scanner continuously works as follows:

1. It retrieves an image name i from the Message Broker.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

4

2. It runs the analysis function analysis on the image name i producing a description
descr=analysis(i).

3. It sends the generated description descr to the Images Service that stores the description into
the local storage.

The description descr sent to the Images Service is a JSON object containing the information
obtained by running the analysis function on the image. It is worth noting that the Scanner,
depending on the analysis function executed, can be the most time consuming service in the
architecture. For example, if the function analysis requires downloading all layers of a Docker
image locally then it can require up to minutes to download a single image. In order to decrease the
time needed to analyse images, the number of Scanner microservices can be increased by exploiting
the scalability property of microservice-based architectures (see Sect.4.1 for a concrete example of
analyser exploiting such scalability to reduce the time to analyse images).

2.2. Microservices in the storage group

DOCKERANALYSER stores all image descriptions produced by the Scanners into a local storage.
The images descriptions stored in the local storage are made accessible through a RESTful API. To
accomplish such a storage functionality, DOCKERANALYSER relies on a microservice composed
by the Image Service and Image Database (Fig. 1).

Images Database. The Images Database is the local repository where the image descriptions are
stored. Given that different analysis functions can produce different image descriptions, the Images
Database has been implemented as a NoSQL database without a fixed model.

Images Service. The Images Service is a RESTful service that permits adding, deleting, updating,
and searching image descriptions inside the Images Database. The Images Service interface is
used both by other microservices in DOCKERANALYSER (for adding, deleting, updating images
descriptions) and by external users (for submitting queries to the local repository).

3. DOCKERANALYSER

We hereby illustrate the implementation of DOCKERANALYSER∗ (Sect. 3.1) and we then show the
steps needed to obtain different analysers of Docker images (Sects. 3.2 and 3.3).

3.1. Implementation of DOCKERANALYSER

The microservice-based architecture of DOCKERANALYSER has been implemented as a multi-
container Docker application, where each microservice is implemented and shipped in its own
Docker container. Fig. 2 illustrates such a multi-container Docker application by representing
each Docker container as a box labelled with the name of the microservice it implements, and
with the logo of the official Docker image used to ship such microservice. Fig. 2 shows also the
communication protocol exploited by the microservices to interact each other (viz., HTTP, AMQP),
and the Docker registry from which to retrieve the images to be analysed (viz., the Docker Hub). We
now separately discuss the implementation of the microservices in the analysis and storage groups.

Analysis. The Message Broker is implemented by directly exploiting the official Docker image for
RabbitMQ†. The Crawler and the Scanner are instead implemented as Python modules, which are
shipped in Docker containers based on the official Docker image for Python‡. Both modules exploit
the Python library pika [30] for communicating (via AMQP) with the Message Broker. Crawler uses
also the Python library requests [31] for interacting with the Docker Hub REST API. The Scanner

∗The source code of DOCKERANALYSER is available on GitHub https://github.com/di-unipi-socc/
DockerAnalyser.
†RabbitMQ Docker image https://hub.docker.com/_/rabbitmq/
‡Python Docker image https://hub.docker.com/_/python/

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

https://github.com/di-unipi-socc/DockerAnalyser
https://github.com/di-unipi-socc/DockerAnalyser
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/python/

5

Figure 2. DOCKERANALYSER as a multi-container Docker application.

module is configured to import and run the user-defined analysis function. By default, the analysis
function is a void function that given an image to be analysed it sends the same image to the Images
Service. The steps needed to execute a custom analysis function in DOCKERANALYSER are listed
in Sect. 3.2.

Storage. The Images Database is implemented as a NoSQL database hosted on a MongoDB
container§. The Images Service is a RESTful API implemented in JavaScript, which is shipped
in a container based on the official Docker image for NodeJS¶. The Images Service API provides
the HTTP methods for adding, updating, deleting, and searching image descriptions. To do so, it
exploits the JavaScript framework express [16] to run a web server and mongoose [27] sto interact
(via mongodb) with the Images Database. The Images Service API returns the image descriptions
as JSON documents.

3.2. How to create new Docker image analysers

A user can instantiate DOCKERANALYSER in order to obtain new Docker image analysers. The
steps needed for obtaining a new analyser consist of (i) replacing the analysis function, (ii) selecting
the crawling policies of the Crawler microservice, and (iii) setting the scaling options of the Scanner
microservice.

The analysis function is replaced by instantiating the Scanner microservice of DOCKERANALYSER
with a user-defined analysis function. More precisely, the steps needed to instantiate DOCKER-
ANALYSER with a customised analysis function are the following:

1. Clone the GitHub repository of DOCKERANALYSER locally.
2. Create a folder F (that represents the deploy package – Fig. 1) and inside the created folder

create the following files:

(a) The analysis.py file that contains the code of the custom analysis function,
(b) The requirements.txt file that contains the Python library dependencies‖,
(c) Any other file needed by the analysis function (e.g., configuration files)

§MongoDB Docker image https://hub.docker.com/_/mongo/
¶NodeJS Docker image https://hub.docker.com/_/node/
‖The file requirements.txt is empty if the implemented function does not have dependencies.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

https://hub.docker.com/_/mongo/
https://hub.docker.com/_/node/

6

3. Build the Scanner Docker image with Docker Compose [11] by running the command
docker-compose build --build-arg DEPLOY PACKAGE PATH=<F>
scanner, (where F is the name of the folder created at step 2).

It is worth noting that step 3 builds the Docker image of the Scanner with the customised
analysis function (contained in the analysis.py) that replaces old Scanner code. The option
--build-arg DEPLOY PACKAGE PATH=<F> at step 3 copies the folder F (containing the
custom analysis.py file, the requirements.txt file and any other files needed to the
analysis) into the (old) Docker image of the Scanner Docker image hence allowing to create a
new image running the new analysis function. The new image of the Scanner is indeed built by
importing the custom analysis.py function and by installing all dependencies listed in the file
requirements.txt (if any).

1 def analysis(image_json, context):
2 logger = context[’logger’]
3 client_images = context[’images’]
4 # return True or False

Listing 1. Signature of the function defined in the analysis.py file.

The analysis.py file stored in the deploy package F contains the code of the custom analysis
function (written in Python) and it must follow the signature illustrated in Listing 1.

• The image parameter is a JSON object containing the name of the image to be analysed
along with other basic fields taken from the registry (some of the most important fields of the
JSON object are is automated, is official, star count, and pull count).

• The context parameter is a dictionary containing the objects images and logger
(lines 2, 3). The images object can be used for interacting with the Images Service API.
More precisely, images offers the methods get image(name), post image(json),
put image(json), delete images(id) for getting, adding, updating, and deleting
an image into the Images Database, respectively. The logger is the standard logging.Logger
class of Python and it provides a set of methods for logging the actions during the execution
of the code (e.g., info(), warning(), error(), critical(), log().

• The return code is a boolean value. True must be returned by the function if the image has
been processed correctly. False must be returned for discarding and deleting the image from
the Message Broker.

Sect. 4 presents two examples of analysis functions that we used to create two different analysers of
Docker images.

The second step required to obtain a custom analyser is to set the crawling policy of the Crawler
microservice for crawling the images from the Docker Hub. The crawling options of the Crawler
can be found in the docker-compose.yml file in the crawler service definition. The available
configuration options are the following:

--randomBy setting --random=True the Crawler crawls the images from the Docker registry
by randomly selecting them, otherwise it crawls images sequentially.

--policy By setting --policy=stars first the Crawler crawls the images starting from
those with a higher number of stars. Otherwise, by setting --policy=pulls first it
crawls first the images with more number of pulls.

--min-stars This option permits setting the minimum number of stars
(--min-stars=<integer>) that an image must have in order to be crawled. All
the images with a number of stars less than --min-stars are not crawled.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

7

--min-pulls This option permits setting the minimum number of pulls
(--min-pulls=<integer>) that an image must have in order to be crawled. All
the images with a number of pulls less than --min-pulls are not crawled.

--only-official If this option is set, then only the official images stored into the Docker
registry are crawled.

--only-automated If this option is set, then only the images that are automatically created
from a GitHub repository are crawled.

Finally, the user can configure the scaling options of the architecture by setting the number of
replicas of the Scanner microservice. Running more Scanners in parallel may reduce the time
needed to analyse the crawled images. The deploy option of the scanner in the docker-
compose.yml file permits specifying the number of parallel Scanners to be started. Listing 2 shows
an example of a configuration that starts 10 Scanners in parallel when the analyser is started.

1 scanner:
2 ...
3 deploy:
4 mode: replicated
5 replicas: 10

Listing 2. An example of configuration of the Scanner microservice.

In addition, the Scanner can be scaled up or down at run time by using the
command docker-compose scale [SERVICE=NUM...]. For example, the command
docker-compose scale scanner=5 updates the number of Scanner replicas to 5.

3.3. How to deploy DOCKERANALYSER

DOCKERANALYSER is a multi-container Docker application which can be deployed using the
Docker platform. It can be deployed in two different configurations, depending on whether the target
infrastructure is a single host or a cluster of multiple hosts. The single host deployment configuration
runs all the containers of DOCKERANALYSER in a single node while the multi host deployment runs
the containers in a cluster of distributed nodes. While former is suitable for running simple and low
load analyser, the latter is recommended whenever the analyser requires higher amount of physical
resources (e.g., network traffic or storage space) because it permits distributing the load on multiple
machines rather than just one.

Single host deployment. Docker Compose [11] permits deploying a multi-container application on a
single host if such application is equipped with a docker-compose.yml that describes the application
deployment. DOCKERANALYSER is equipped with its own docker-compose.yml file, and it can
hence be deployed on any host supporting Docker Compose. In order to start a newly created
analyser, users should submit the command docker-compose up.

Multiple host deployment. Docker Swarm [15] permits defining a cluster of Docker engines (called
a swarm) where to schedule the containers forming a multi-container application. DOCKER-
ANALYSER is equipped with a shell scripts (called start swarm.sh) that allows to start the analyser
in a swarm. The script assumes that the user has already configured the swarm where the analyser
will be actually executed (as the script itself will have to be executed within the Docker engine
managing the swarm). The start swarm.sh script takes as input the name of the deploy package and
the name to be assigned to the analyser. The script first creates the Scanner image with the deploy
package, and it then runs the analyser into the swarm. By default, the script distributes the containers
of the analyser among all nodes of the swarm.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

8

4. USE CASES

In this section, we illustrate how different analysers of Docker images can be created by
instantiating DOCKERANALYSER with different user-defined analysis functions. In particular, we
present DOCKERFINDER and DOCKERGRAPH, two use cases that run different analysis functions.
DOCKERFINDER analyses an image by running it in a container and checking whether the image
provides a list of software distributions. DOCKERGRAPH, instead, creates a graph of Docker
images where each node is a name of the repository of an image and where every node is
connected to its parent image. The use cases are obtained by replacing the scanner microservice
of DOCKERANALYSER (that consist of replacing the Scanner Docker image) while the other
microservices in the architecture remain untouched. As presented in Sect. 3.2 replacing the scanner
microservice corresponds to building a new Scanner Docker image starting from a user-defined
deploy package folder (containing the analysis.py file, the requirements.txt file, and
any other files needed by the analysis function).

4.1. DOCKERFINDER

Docker images stored in Docker Hub provide virtually almost any software distributions
(e.g., libraries, programming languages, frameworks) to the users. However, the current support for
searching such images based on the software distributions they support is missing. Users may want
to deploy an application component in a Docker image and that such application requires some
specific versions of software distributions (e.g., Python 2,7, Java 1.8). DOCKERFINDER permits
searching for Docker images based on the versions of software distributions they support.
The deploy-package folder of DOCKERFINDER contains three files: the analysis.py
(Listing 3), the requirements.txt file that contains only the docker==2.2.1 python
library dependency (used by the analysis function for interacting with Docker daemon), and the
software.json JSON (Listing 4) file containing the list of software distributions to be searched
in each image. The JSON file contains a list of triples, where each triple is composed of the name of
the software distribution, the command to be executed in order to know the version of the software,
and a regular expression used to search the matching version (if it exists).

The analysis function of DOCKERFINDER is detailed in Listing 3. Lines 1-4 import the Python
libraries json, docker, re, and os used by the function∗∗. Line 6 creates the Docker client object
exploited for interacting with Docker daemon. Line 8 defines the analysis function that takes as
input the image to be analysed and the context. Lines 12-14 pull the image locally using the docker
client, then create and start an infinite sleeping container. Lines 16-20 open software.json
file contained in the deploy package folder and for each software distribution (line 18) takes the
command (e.g., python version) to be executed and run the command into the already running
container. Line 19 the output variable that contains the result of execution of the command inside
the container. Lines 20-26 use the regular expression to search the version of the software in the
output variable (if it exists). Lines 27 adds the software distribution found (if any) in the JSON that
will then sent to the images server. Line 28 uses the client images.post image(json) to
post the JSON object containing the results of the analysis into the Images Service. Line 29-30 stop
the sleeping container and remove it. Line 31 removes also the Docker image analysed. Both the
container and the image are removed for freeing storage space.

Users can search Docker images based on the software distributions they support calling the
RESTful API of the Images Service. The parameters of the Images Service API are obtained looking
at the fields contained in the JSON object that describe the images analysed. For example, in
order to retrieve the Docker images supporting both Java and Python users can query the Images
Service with the GET api/images?python=2.7&java=1.8 method. DOCKERFINDER can
be exploited by other tools for obtaining the list of Docker images that satisfy the software

∗∗The analysis function can import (in addition to the library present into the requirements.txt) any of the standard
library provided by Python (e.g., json, re, os).

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

9

1 import json
2 import docker
3 import re
4 import os
5
6 client_docker= docker.DockerClient(base_url="unix://var/run/docker.sock")
7
8 def analysis(image_json, context):
9 logger = context[’logger’]

10 client_images = context[’images’]
11 try:
12 image = client_docker.images.pull(images_json[’name’])
13 container = client_docker.containers.create(images_json[’name’],

entrypoint="sleep infinity")
14 container.start()
15 softwares = {}
16 with open(os.path.join(os.path.dirname(__file__), ’softwares.json’)) as

softwares_json:
17 software = json.load(softwares_json)
18 for sw in software:
19 output = container.exec_run(cmd=sw[’cmd’]).decode()
20 match = re.search(sw[’regex’], output)
21 if match:
22 version = match.group(0)
23 softwares[sw[’name’]] = match.group(0)
24 else:
25 logger.debug("[{0}] NOT found in ".format(sw[’name’]))
26
27 images_json[’softwares’] = softwares
28 client_images.post_image(images_json)
29 container.stop(timeout=2)
30 container.remove()
31 client_docker.images.remove(images_json[’name’], force=True)
32 except docker.errors.ImageNotFound as e:
33 logger.exception("{} image not found".format(images_json[’name’]))
34 return False
35 return True

Listing 3. analysis.py function of DOCKERFINDER

1 [{
2 "name": "python",
3 "cmd": "python --version",
4 "regex": "[0-9]+[.][0-9]*[.0-9]*"
5 }, {
6 "name": "java",
7 "cmd": "java -version",
8 "regex": "[0-9]+[.][0-9]*[.0-9]*"
9 }

10]

Listing 4. Some of the software distributions listed in the software.json file.

distributions required by an application component that needs to be deployed in Docker containers
(e.g., TOSKERISER [4]).

By running DOCKERFINDER, we discovered that the most time consuming task is that of
Scanner, which have to spend time in downloading images and in analysing them to produce their
descriptions. Images can be scanned independently and Scanner can hence be easily scaled out to
improve the time performances of DOCKERFINDER (as shown†† in Fig. 3). Exploiting the scalability

††The results displayed in Fig. 3 have been obtained by running DOCKERFINDER on a Ubuntu 16.04 LTS workstation
having a AMD A8-5600K APU (3.6 GHz) and 4 GBs of RAM.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

10

 0

 40

 80

 120

 160

 1 2 3 4 5

co
m

pl
et

io
n

tim
e

(m
in

s)

amount of scanners

 1

 2

 3

 4

 5

 1 2 3 4 5

sp
ee

du
p

amount of scanners

(a) (b)

Figure 3. Time performances registered for analysing a set of 100 images randomly sampled from the Docker
Hub, where each image was analysed by Scanners by checking the availability of 16 different software
distributions. In both plots, the x-axes represent the amount of replicas of Scanners actually running in
the running instance of DOCKERFINDER. The y-axes instead represent the (a) completion time and the (b)

corresponding speed-up.

property of microservice-based architecture, and given the fact that DOCKERFINDER is a multi-
container Docker application scaling Scanners just corresponds to manually increasing/decreasing
the amount of corresponding Docker containers running.

4.2. DOCKERGRAPH

Docker permits reusing an already existing image for building other images. An image reused by
another image is called parent image. Most of the Docker images stored in Docker Hub are built by
reusing already existing images. However, the support for knowing the parent relationship occurring
between images is missing. Knowing which are the images that are more used by other images or
knowing the images use a single parent image can be exploited for many applications. For example,
if a parent image is affected by a security flaw, having the graph of all the images that reused the
affected image as parent image can be useful for patching the flaw in such images. DOCKERGRAPH
can be also used by other tools that require to implement a smart caching policy of images. For
instance, the graph can be exploited for maintaining the images locally that are more used as parent
image without deleting them.

DOCKERGRAPH constructs a directed graph of images where the nodes are the repository names
of images and a link from an image s to an image p is added if the image p is the parent image of s.
DOCKERGRAPH retrieves the repository name of the parent image by looking at the FROM option
in the Dockerfile used to create an image.

The deploy package folder of DOCKERGRAPH is composed by the analysis.py file and an
empty requirements.txt because the analysis function requires no external libraries. The
analysis function of DOCKERGRAPH is shown in Listing 5. Lines 1-2 import the requests
and re Python libraries used to interact with the GitHub API and for handling regular expression,
respectively. Lines 4-24 defines the analysis function of DOCKERGRAPH. Lines 5-6 gets the
logger and the client images objects. Line 10 checks whether the image has been already
analysed by calling the is new() method of the client images object provided by the
context. If the image has not been already analysed, line 13 calls the get dockerfile(repo)
method that retrieve the image’s Dockerfile stored into Docker Hub (if it is present). Line 14 calls
extract FROM(dockerfile) method that use a regular expression for extracting the FROM
option present into the Dockerfile. It returns a couple of strings where the first is the repository name
and the second is the tag of the parent image. Lines 15 adds the repository name (from repo) and

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

11

1 import requests
2 import re
3
4 def analysis(image_json, context):
5 logger = context[’logger’]
6 client_images = context[’images’]
7
8 repo = image_json["repo_name"]
9 logger.info("Received image to be analysed: {} ".format(repo))

10 if client_images.is_new(repo):
11 node_image = {’name’: repo}
12 try:
13 dockerfile = get_dockerfile(repo)
14 from_repo, from_tag = extract_FROM(dockerfile)
15 node_image[’from_repo’] = from_repo
16 node_image[’from_tag’] = from_tag
17 client_images.post_image(node_image)
18 except ValueError as e:
19 logger.error(str(e))
20 return False
21 return True
22 else:
23 logger.info("{} already present into local database ".format(repo))
24 return False
25
26 def extract_FROM(dockerfile):
27 search = re.search(’FROM ([ˆ\s]+)’, dockerfile)
28 if search:
29 from_image = search.group(1)
30 if ":" in from_image:
31 from_repo, from_tag = from_image.split(":")
32 else:
33 from_repo = from_image
34 from_tag = None
35 return from_repo, from_tag
36 else:
37 raise ValueError("FROM value not found in DockerFile")
38
39
40 def get_dockerfile(repo_name):
41
42 docker_url = "https://hub.docker.com/v2/repositories/{}/dockerfile/"
43 try:
44 response = requests.get(docker_url.format(repo_name))
45 dockerfile = response.json()[’contents’]
46 return dockerfile
47 except ConnectionError as e:
48 raise e

Listing 5. analysis.py function of DOCKERGRAPH

the tag (from tag) of the parent image name Python dictionary describing the image. In line 17 the
client images.post image(JSON) method is called to add the node image dictionary to
the Images Service.
DOCKERGRAPH has been executed‡‡ to crawl sequentially the repository stored in Docker
Hub. At the time of executing DOCKERGRAPH, Docker Hub contained approximately 600000
repositories. The graph constructed by DOCKERGRAPH counts 87570 repository names because
DOCKERGRAPH discarded all the repositories in Docker Hub whose Dockerfiles are not present or
badly formatted. Fig. 4 shows only the top 10 images used as parent images by other images. The
most used image is ubuntu with 15208 images using it as parent image, while nginx is used as parent
image by 1697 images.

‡‡DOCKERFINDER has been executed on a Ubuntu 16.04 LTS workstation having a AMD A8-5600K APU (3.6 GHz)
and 4 GBs of RAM.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

12

ub
un

tu
alp

ine

de
bia

n

py
tho

n
no

de
ce

nto
s

rub
y

jav
a

ph
p

ng
inx

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

15,208

6,915
6,425

4,4184,289
3,840

2,982
2,4112,286

1,697

N
um

be
ro

fc
hi

ld
re

n
im

ag
es

.

Figure 4. Top ten Docker images used as parent images.

It is worth nothing that the image descriptions obtained by an analyser are returned as raw data
(i.e., JSON objects). It is left to the users to post-process the raw data and to visualise it (like in
the chart in Fig. 4) using data visualisation tools. The data visualisation of the obtained images
descriptions is outside of the scope of this work.

4.3. Discussion

In this section, we discuss the advantages of using DOCKERANALYSER versus building Docker
images analysers from scratch. We evaluated the usefulness of DOCKERANALYSER by considering
(i) the number of functionalities to be developed, (ii) the reusability of the code, and (iii) the time
required to obtain new analysers starting from already existing analysers.

DOCKERANALYSER reduces the number of functionalities to be developed with respect to build
the analyser from scratch. Table I reports four of the main functionalities that an analyser should
support: Image crawling is how the images are crawled from a Docker registry, Image analysis
is how the images are analysed, Storage of results is how the results are stored, and Scalable
architecture is how to implement a scalable architecture. As shown by Table I, DOCKERANALYSER
considerably simplifies the building of analysers by requiring to only account for the Image analysis,
as the others functionalities are provided by the architecture. Image crawling is carried out by the
Crawler, Storage of results is provided by the local storage database, and the Scalable architecture
is permitted by scaling the Scanner microservice. Instead, building an analyser from scratch would
require to develop all the four functionalities.

Using DockerAnalyser From Scratch

Image crawling no yes
Image analysis yes yes
Storage of results no yes
Scalable architecture no yes

Table I. Functionalities to implement during the design of new Docker images analysers.

We also evaluated the reusability of DOCKERANALYSER by considering both the number of
reusable components and the amount of reusable code of the architecture. DOCKERANALYSER is
composed by five components (Crawler, Message Broker, Scanner, Images Service, and Images
Database). A new analyser is obtained from DOCKERANALYSER by only replacing the Scanner

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

13

component, hence reusing the other four components. We also evaluated the amount of reusable
code with the following metric (taken from [18]):

R =
lines of reused code

total lines of code

We exploited such metric for evaluating the percentage of reused code for both the analysers we
developed, viz., DOCKERFINDER (Rdf) and DOCKERGRAPH (Rdg). For both DOCKERFINDER
and DOCKERGRAPH the reused code is around 94%:

Rdf =
locda
locdf

=
1861

1971
= 0.944

Rdg =
locda
locdg

=
1861

1976
= 0.941

Notice that, in both formulas, the value of lines of reused code is the amount locda of lines
of code of DOCKERANALYSER (which are all included also in both the analysers we developed).
The values of total lines of code are instead the amounts locdf and locdg of all lines of
code of DOCKERFINDER and DOCKERGRAPH, respectively.

Finally, DOCKERANALYSER can reduce the time required to obtain new analysers starting from
already existing analysers. For example, by reusing the code of DOCKERFINDER, a user may
create a new analyser by only modifying the files analysis.py and software.json that
we provided. She can customise the commands executed by DOCKERFINDER by modifying the
software.json file or she can modify the lines 15-25 of Listing 3 in order to execute a different
type of analysis on the images.

5. RELATED WORK

MicroBadger [26] is an on-line service that shows the contents of public Docker images, including
metadata and layer information. Using MicroBadger a user can also add personalized metadata
to images in order to retrieve them successively. MicroBadger differs from DOCKERANALYSER
because it only permits to assign metadata to images but it does not provide a way to run customised
analysis of Docker images.

Another approach that allows assigning custom properties to Docker images is JFrog [21]. JFrog’s
Artifactory is a universal Artefact Repository working as a single access point to software packages
including Docker. JFrog can search Docker images by their name, tag or digest. Users can also
assign custom properties to images, which can then be exploited to specify and resolve queries.
JFrog differs from DOCKERANALYSER since permits only to assign manually custom metadata to
images. DOCKERANALYSER architecture fully automates the process of assigning properties to the
images based on what they feature.

Works in [33, 19, 2, 1] are frameworks that follow the serverless architecture [32] for running
custom functions. The serverless functions are functions written in any language that are mapped to
event triggers (e.g., HTTP requests) and scaled when needed.

Snafu [33], or Snake Functions, is a modular system to host, execute and manage language-level
functions offered as stateless microservices to diverse external triggers. Functions can be executed
in-memory/in-process, through external interpreters (Python 2, Java), and dynamically allocated
Docker containers.

OpenLambda [19] is an Apache-licensed serverless computing project, written in Go and based
on Linux containers. One of the goals of OpenLambda is to enable exploration of new approaches
to serverless computing.

kubeless [2] is a Kubernetes-native serverless framework. Kubeless permits creating functions
and run them on a in-cluster controller that watches and launches the functions on-demand.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

14

IronFunctions [1] is an open source serverless platform. It can run any languages as functions and
it supports AWS lambda format. Prerequisites: Docker 1.12 or later installed and running

The common characteristic of DOCKERANALYSER and serverless architectures is that both
approaches allow users to provide only an analysis function while the architecture is responsible to
run, scale, and manage the execution of such function. DOCKERANALYSER differs from serverless
architecture because it provides also an internal storage where the description of the images
produced by the analysis function are stored. The previous approaches of serverless architecture,
instead, do not provide any support for storing the results of the functions.

Our work shares with Wettinger et al. [34] the general objective of contributing to ease the
discovery of DevOps “knowledge” (which includes Docker images). [34] proposes a collaborative
approach to store DevOps knowledge in a shared, taxonomy-based knowledge base. More precisely,
[34] proposes to build the knowledge-base in a semi-automated way, by (automatically) crawling
heterogeneous artefacts from different sources, and by requiring DevOps experts to share their
knowledge and (manually) associate metadata to the artefacts in the knowledge-base. DOCKER-
ANALYSER instead focuses only on container images, and it permits building analyser that creates
description of such images in a fully-automated way.

Finally, is worth noting that there exist solutions that try resolve the problems addressed by the two
use cases presented in Sect. 4.

Docker Store [14] is a repository containing trusted and verified Docker images. Similar to Docker
Hub, Docker store offers a search web-based interface that returns the images that match the image
name, description, or the publisher name. In addition, Docker Store permits limiting the results by
category (e.g., programming languages, base images, Operating System). With Docker Store it is not
possible to distinguish, for instance, whether an image support a software distribution (e.g., Python,
Java) since all images supporting such languages fall in the same category. DOCKERFINDER does
not suffer of the same limitation, as it permits explicitly searching for images supporting either Java
or Python, or both.

ImageLayers [25] is an on-line service that analyses Docker images stored in Docker Hub
and shows the layers that compose them and layers that are shared by multiple images. While
ImageLayers considers the layers composing an image, DOCKERGRAPH instead considers the
parent image of an image. DOCKERGRAPH permits analysing all the images contained in a Docker
Registry and constructs a graph of images. ImageLayers permits only analysing the layers a single
image at the time and returns a flat description of a single image.

6. CONCLUSIONS

Docker images are stored in Docker Registries that allow to add, remove, distribute, and search
such images. Images stored inside Docker registries are described by fixed attributes (e.g., name,
description, owner of the image), which may not be enough to permit users to select the images
satisfying their needs. Currently, users are required to manually download the images from remote
registries and look for images satisfying the desired functionalities.

In order to solve the aforementioned problem, we presented DOCKERANALYSER a tool to build
customised analysers of Docker images in a fully automated way. Users are required to provide only
the analysis function and any other files needed by the analysis function, whilst DOCKERANALYSER
disposes of the functionalities for crawling the images from a Docker registry, running the provided
analysis on every image, storing the results of the analysis in a local storage, and searching the
obtained results.

We believe that the actual value of DOCKERANALYSER is that it can be exploited by users
(e.g., researchers, developers and data miners) interested in building their own analysers of Docker
images. Users are only required to provide the analysis function, in the form of a Python function
that, given the name of a Docker image, scans such image to extract some metadata for generating
the description of the image.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

15

We identified three main classes of analysers that can be obtained from DOCKERANALYSER,
namely:

1. Analysers that execute commands inside Docker images for extracting features,
2. analysers that inspect the source code of Docker images, and
3. analysers that scan the compiled/binaries version of Docker images.

In the paper, we have shown a concrete example of analyser for class (1) and a concrete example
for class (2). For (1) we presented DOCKERFINDER, an analyser that extracts the versions of the
software supported by the images. For (2) we presented DOCKERGRAPH that analyses the source
code stored in the GitHub repository (the Dockerfile of the image) in order to construct a graph of
parent images. The development of an analyser in class (3), and (more generally) the development
of other analysers and the identification of other classes of analysers that can be defined is left for
future work.

The use cases also showed that the choice of implementing DOCKERANALYSER with a
microservice-based architecture eases building customisable and scalable analysers. We indeed
experimented the benefits of the scalability and replaceability properties of microservice-based
architectures. In particular, replaceability allows obtaining DOCKERFINDER and DOCKERGRAPH
by only replacing the Docker image of the scanner microservice. Instead, by exploiting the
scalability property, we scaled the number of Scanner microservices of DOCKERFINDER in order
to reduce the time needed to analyse the images.

We believe that DOCKERANALYSER can also take advantage of the extensibility property of
microservice-based architectures that permit adding new microservices. For instance, DOCKER-
ANALYSER can be extended with a checker microservice (such as in [5]) that maintains the
consistency of the images stored in the local storage of DOCKERFINDER and those in Docker Hub.

As part of our future work we want to build DOCKERANALYSER as a web-based service where
users can upload the deploy package folder F through a GUI and the web-based service creates the
analyser with the provided deploy package, starts the analyser, and visualises the obtained images
descriptions in a dashboard (e.g., with customisable charts, like that in Fig. 4).

In addition, we plan to extend DOCKERANALYSER in such a way, that (i) it permits analysing
other container-based technologies (such as [7, 20]), and (ii) it permits specifying the analysis
function in other programming languages (e.g., Java, Go, Bash), Finally, we plan also to implement
other analysers of Docker images. For instance, a security analyser can be built by using one of
the existing static analyser of Docker images (such as [8]) in order to analyse the images stored in
Docker Hub discovering the images affected by security flaws.

REFERENCES

1. IronFunctions. https://github.com/iron-io/functions. Last accessed: February 20th, 2018.
2. kubeless. https://github.com/kubeless/kubeless. Last accessed: February 20th, 2018.
3. Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective. Addison-Wesley

Professional, 2015.
4. Antonio Brogi, Davide Neri, Luca Rinaldi, and Jacopo Soldani. From (incomplete) TOSCA specifications to

running applications, with docker. In Antonio Cerone and Marco Roveri, editors, Software Engineering and Formal
Methods, volume 10729 of Lecture Notes in Computer Science, pages 491–506. Springer International Publishing,
2018.

5. Antonio Brogi, Davide Neri, and Jacopo Soldani. Dockerfinder: Multi-attribute search of docker images. In 2017
IEEE International Conference on Cloud Engineering, IC2E 2017, Vancouver, BC, Canada, April 4-7, 2017, pages
273–278. IEEE, 2017.

6. Maurizio Cavallari and Francesco Tornieri. Information systems architecture and organization in the era of
microservices. In Rita Lamboglia, Andrea Cardoni, Renata Paola Dameri, and Daniela Mancini, editors, Network,
Smart and Open, volume 24 of Lecture Notes in Information Systems and Organisation, pages 165–177, Cham,
2018. Springer International Publishing.

7. CoreOS. Rkt. https://coreos.com/rkt/. Last accessed: February 20th, 2018.
8. CoreOS. Vulnerability static analysis for containers. https://github.com/coreos/clair. Last

accessed: February 20th, 2018.
9. DataDog. Eight surprising facts about docker adoption. https://www.datadoghq.com/

docker-adoption/. Last accessed: February 20th, 2018.
10. Docker Inc. Docker. https://www.docker.com/. Last accessed: February 20th, 2018.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

https://github.com/iron-io/functions
https://github.com/kubeless/kubeless
https://coreos.com/rkt/
https://github.com/coreos/clair
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://www.docker.com/

16

11. Docker Inc. Docker Compose. https://docs.docker.com/compose/overview/. Last accessed:
February 20th, 2018.

12. Docker Inc. Docker Hub. https://hub.docker.com/. Last accessed: February 20th, 2018.
13. Docker Inc. Docker Hub hits 5 billion pulls. https://blog.docker.com/2016/08/

docker-hub-hits-5-billion-pulls. Last accessed: February 20th, 2018.
14. Docker Inc. Docker Store. https://store.docker.com/. Last accessed: February 20th, 2018.
15. Docker Inc. Docker Swarm. https://docs.docker.com/swarm/. Last accessed: February 20th, 2018.
16. Express. Fast, unopinionated, minimalist web framework for node.js. http://expressjs.com/. Last

accessed: February 20th, 2018.
17. Martin Fowler and James Lewis. Microservices. ThoughtWorks, https://martinfowler.com/

articles/microservices.html. Last accessed: February 20th, 2018.
18. William Frakes and Carol Terry. Software reuse: Metrics and models. ACM Comput. Surv., 28(2):415–435, June

1996.
19. Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani, Andrea C Arpaci-Dusseau,

and Remzi H Arpaci-Dusseau. Serverless computation with openlambda. Elastic, 60:80, 2016.
20. Heroku. Dynos and the Dyno Manager. https://devcenter.heroku.com/articles/dynos. Last

accessed: February 20th, 2018.
21. JFrog Ltd. Docker: Secure Clustered HA Docker Registries With A Universal Artifact Repository. https:

//www.jfrog.com/support-service/whitepapers/docker/. Last accessed: February 20th, 2018.
22. Ann Mary Joy. Performance comparison between linux containers and virtual machines. In 2015 International

Conference on Advances in Computer Engineering and Applications, pages 342–346, March 2015.
23. Zhanibek Kozhirbayev and Richard O. Sinnott. A performance comparison of container-based technologies for the

cloud. Future Generation Computer Systems, 68:175 – 182, 2017.
24. Zheng Li, Maria Kihl, Qinghua Lu, and Jens A. Andersson. Performance overhead comparison between hypervisor

and container based virtualization. In Leonard Barolli, Makoto Takizawa, Tomoya Enokido, Hui-Huang Hsu, and
Chi-Yi Lin, editors, 31st IEEE International Conference on Advanced Information Networking and Applications,
AINA 2017, Taipei, Taiwan, March 27-29, 2017, pages 955–962. IEEE Computer Society, 2017.

25. Microscaling System. Image layers. https://imagelayers.io/. Last accessed: February 20th, 2018.
26. Microscaling System. Microbadger. https://microbadger.com/. Last accessed: February 20th, 2018.
27. Mongoose. Elegant mongodb object modelling for node.js. http://mongoosejs.com/. Last accessed:

February 20th, 2018.
28. Sam Newman. Building microservices. O’Reilly Media, Inc., 2015.
29. Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. Cloud container technologies: a state-of-the-art

review. IEEE Transactions on Cloud Computing, 2017. In press, DOI: 10.1109/TCC.2017.2702586.
30. Pika. Introduction to pika. https://pika.readthedocs.io. Last accessed: February 20th, 2018.
31. Requests. Requests: Http for humans. http://docs.python-requests.org/. Last accessed: February

20th, 2018.
32. Mike Roberts. Serverless Architectures. https://martinfowler.com/articles/serverless.

html. Last accessed: February 20th, 2018.
33. Josef Spillner. Snafu: Function-as-a-service (faas) runtime design and implementation. CoRR, abs/1703.07562,

2017.
34. Johannes Wettinger, Vasilios Andrikopoulos, and Frank Leymann. Automated capturing and systematic usage of

devops knowledge for cloud applications. In Cloud Engineering (IC2E), 2015 IEEE International Conference on,
pages 60–65, March 2015.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2018)
Submitted draft. Prepared using speauth.cls DOI: 10.1002/spe.2583

https://docs.docker.com/compose/overview/
https://hub.docker.com/
https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls
https://blog.docker.com/2016/08/docker-hub-hits-5-billion-pulls
https://store.docker.com/
https://docs.docker.com/swarm/
http://expressjs.com/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://devcenter.heroku.com/articles/dynos
https://www.jfrog.com/support-service/whitepapers/docker/
https://www.jfrog.com/support-service/whitepapers/docker/
https://imagelayers.io/
https://microbadger.com/
http://mongoosejs.com/
https://pika.readthedocs.io
http://docs.python-requests.org/
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html

	1 Introduction
	2 DockerAnalyser architecture
	2.1 Microservices in the Analysis group
	2.2 Microservices in the storage group

	3 DockerAnalyser
	3.1 Implementation of DockerAnalyser
	3.2 How to create new Docker image analysers
	3.3 How to deploy DockerAnalyser

	4 Use cases
	4.1 DockerFinder
	4.2 DockerGraph
	4.3 Discussion

	5 Related work
	6 Conclusions

