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Abstract

Nowadays, applications are composed by multiple heterogeneous components, whose management must be suitably
coordinated by taking into account inter-component dependencies and potential failures. In this paper, we first present
fault-aware management protocols, which allow to model the management behaviour of application components, and
we then illustrate how such protocols can be composed to analyse and automate the overall management of a multi-
component application. We also show how to recover applications that got stuck because a fault was not handled
properly, or because a component is behaving differently than expected. To illustrate the feasibility of our approach, we
present Barrel, a proof-of-concept application that permits editing and analysing fault-aware management protocols
in multi-component applications. We also discuss the usefulness of Barrel by showing how it was fruitfully exploited
it in a concrete case study and in a controlled experiment.

1. Introduction

How to automatically manage composite applications is
currently one of the major concerns of enterprise IT [1].
This holds especially when deploying such applications on
cloud platforms, as the efficient exploitation of cloud com-
puting peculiarities strictly depends on the degree of au-
tomation of the management of applications [2].

Composite applications typically integrate various het-
erogeneous components. Hence, the deployment, config-
uration, enactment, and termination of the components
forming a composite application must be suitably coordi-
nated, by also taking into account all dependencies occur-
ring among application components. As the number of
components grows, or the need to reconfigure them be-
comes more frequent, application management becomes
more and more time-consuming and error-prone [1].

Topology graphs provide a convenient representation of
the structure of composite applications [3]. The nodes
in a topology graph represent the components of an ap-
plication, while its oriented arcs represent the dependen-
cies among such components. More precisely, each node
models an application component by describing its require-
ments, the operations to manage it, and the capabilities
it features (to satisfy the requirements of other nodes).
Arcs model inter-component dependencies by associating
the requirements of a node with capabilities featured by
other nodes.

The management behaviour of topology nodes can be
specified by means of management protocols, as we illus-
trated in [4]. Each node can be equipped with its own man-
agement protocol, which is a finite state machine whose
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states and transitions are enriched with conditions on the
requirements and capabilities of such node. Conditions on
states permit defining which requirements of a node must
be satisfied in a state, as well as which capabilities the
node actually provides in such state. Conditions on tran-
sitions instead define which additional requirements must
be satisfied to actually execute a management operation in
a state. Given that topology graphs connect the require-
ments of a node with the capabilities that can satisfy them,
and assuming that a requirement is satisfied only when the
corresponding capability is actually provided, the manage-
ment behaviour of a composite application can be derived
by composing the management protocols of its nodes – ac-
cording to the dependencies defined in its topology.

However, management protocols (as per [4]) do not cope
with the potential occurrence of faults. This limits their
applicability, as an application component may be affected
by faults caused by another component on which it relies
(e.g., a component may be shutdown or uninstalled while
other components are relying on its capabilities). Faults
and fault handling must indeed be considered when man-
aging complex composite applications [5].

In this paper, we introduce fault-aware management pro-
tocols, which extend those in [4] by also allowing to model
how nodes react to faults. We then show how this permits
analysing and automating the management of composite
applications in a fault-resilient manner.

We illustrate how to derive the fault-aware manage-
ment behaviour of a composite application by combining
the fault-aware management protocols of the nodes in its
topology. We then show how such behaviour can be ex-
ploited to check the validity of a plan orchestrating the
management of an application, and to determine its ef-
fects (e.g., which application configuration is reached by
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executing it, or whether it may generate faults while being
executed). We also show how this permits automatically
determining plans that can accomplish specific manage-
ment goals (e.g., reaching a desired application configura-
tion, or restoring it after a fault occurred). Also, based on
the observation that the actual behaviour of an application
component may be different from that specified in its fault-
aware management protocol (e.g., due to non-deterministic
bugs [6]), we show how to deal with misbehaving compo-
nents. Namely, we show how to model the unexpected
behaviour of an application component by automatically
completing its fault-aware management protocol, and we
illustrate how this permits analysing the (worst possible)
effects of misbehaving components on the rest of an appli-
cation. We also present a solution to automatically recover
applications that are stuck because of a misbehaving com-
ponent and/or because a fault was not properly handled.

Finally, we show how we integrated fault-aware manage-
ment protocols in the OASIS standard TOSCA (Topol-
ogy and Orchestration Specification for Cloud Applica-
tions [7]). We first introduce Barrel, a proof-of-concept,
web-based application that permits editing fault-aware
management protocols of the components forming TOSCA
applications, and analysing the management of such ap-
plications. We then discuss the usefulness of Barrel by
showing how it can be fruitfully exploited to validate and
automate the (fault-aware) management of a concrete case
study, and by means of a controlled experiment.

This paper is an extended version of [8]. The fault-aware
management protocols defined in this paper are a strict
generalisation of those in [8], and such generalisation eases
the specification of fault handling transitions. Also, this
paper extends [8] by characterising the properties that
must be satisfied by management protocols, by formalis-
ing the notion of hard recovery in composite applications,
by providing a proof-of-concept implementation to edit
and analyse fault-aware management protocols (viz., Bar-
rel), and by discussing the usefulness of our approach by
means of a case study and of a controlled experiment.

The rest of the paper is organised as follows. Sect. 2
provides an example motivating the need for fault-aware
management protocols, which are formally introduced in
Sect. 3. Sect. 4 shows how fault-aware management pro-
tocols can be automatically composed to analyse the man-
agement of a composite application in presence of faults.
Sect. 5 introduces Barrel, while Sect. 6 discusses its use-
fulness through a case study and a controlled experiment.
Finally, Sects. 7 and 8 discuss related work and draw some
concluding remarks, respectively.

2. Motivating scenario

Consider the toy application in Fig. 1, composed by a web-
based Frontend that exploits a Backend API to serve its
functionalities. Both the Frontend and the Backend are

Figure 1: Topology of the application in our motivating scenario
(depicted according to the TOSCA graphical notation [9]).

hosted on an Nginx server, which is in turn deployed on a
Ubuntu operating system.

Interdependencies between application components are
also explicitly represented in Fig 1. Each dependency
is modelled with a relationship connecting each require-
ment of each node with the capability satisfying such re-
quirement (e.g., the requirements Server and Backend of
Frontend are connected with the capability AppRTE of
Nginx and with the capability Endpoint of Backend, re-
spectively). Relationships can describe “vertical” contain-
ment dependencies, which indicate that a component is
contained in another (e.g., Server is hosted on Nginx), or
“horizontal” dependencies, which indicate that a compo-
nent just requires another (without stating that the former
is contained in the latter — e.g., Frontend must connect
to the Endpoint offered by Backend to work properly).

Suppose that we wish to orchestrate the deployment of
our application with a dedicated management plan. Since
the represented application topology does not include any
management protocol for its components, one may pro-
duce invalid management plans. For instance, while Fig. 2
illustrates three seemingly valid plans, only (c) is a valid
plan. Plan (a) is not valid since the operation Configure of
Nginx cannot be executed before Nginx itself is running,
while plan (b) is not valid since Frontend must always wait
for Backend to be running to Connect to it.

Consider now the application configuration reached by
executing the plan (c) in Fig. 2. All nodes are deployed,
started, and properly connected each other (i.e., all com-
ponents are in their running state). It may happen that:

(i) Backend is stopped by executing its Stop opera-
tion. This results in destroying the connection be-
tween Frontend and Backend, hence faulting Fron-
tend, which can no more exploit the Backend to an-
swer to the requests of its clients. If this is the case,
re-starting Backend would not be enough, as the con-
nection between Frontend and Backend would need
to be re-established.

(ii) Nginx unexpectedly crashes. This generates a fault
also in Frontend and Backend, viz., in the nodes con-
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(a)

(b)

(c)

Figure 2: Example of (workflow) plans orchestrating the deployment of the composite application in our motivating scenario.

tained in the Nginx server. Such nodes are indeed
suddenly killed, and potentially enter in an incon-
sistent state that makes them unusable from there
onwards.

The failures in both (i) and (ii) are due to nodes that stop
providing their capabilities, even if other nodes actually
rely on them on them to continue to work. The fault in
(i) is caused by the execution of a management operation,
which stops a node while other are depending on its ca-
pabilities. Even worse is the case of (ii), where faults are
due to a node that behaves unexpectedly (viz., it unpre-
dictably fails1).

In summary, while the validity of plans can be manually
verified, this is a time-consuming and error-prone process.
To automate the verification of the validity of plans, as
well as the generation of valid plans reaching given appli-
cation configurations, we need an explicit representation
of the management protocols of the nodes appearing in
the topology of a composite application. Such manage-
ment protocols have to take into account the possibility
of faults to occur, and should permit reacting to them to
recover the desired configuration of an application.

3. Fault-aware management protocols

Most of the available languages for modelling composite
applications allow to indicate the states, requirement, ca-
pabilities, and management operations of the nodes build-
ing the topology of a composite application (e.g., enter-
prise topology graphs [3], GENTL [10], TOSCA [7]). We

1Component failures can be detected via monitoring (e.g., by ex-
ploiting watchdogs or heartbeat services). This is particularly useful
for misbehaviour of components and unpredictable failures due to
non-deterministic bugs [6]. We shall not delve into details, as com-
ponent monitoring is outside of the scope of this paper.

hereby propose fault-aware management protocols, which
permit specifying the management behaviour of the nodes
composing an application, i.e. the behaviour of a node’s
management operations, their relations with states, re-
quirement, and capabilities, and how a node reacts to the
occurrence of a fault.

3.1. Definition of fault-aware management protocols

Consider an application component, and let N be the node
modelling such component. To describe the management
behaviour of N , we need to specify whether/how each
management operation of N depends on other manage-
ment operations (i) of the same node N or (ii) of the nodes
that provide capabilities used to satisfy the requirements
of N . Fault-aware management protocols permit specify-
ing (i) and (ii) as follows.

(i) The first kind of dependencies is described by relat-
ing the management operations of N with its states.
The order of execution of the operations of N is de-
scribed by a transition relation τ . The latter specifies
whether a management operation o can be performed
in a state s, and which state is reached by performing
o in s.

(ii) The second kind of dependencies is specified by as-
sociating (possibly empty) sets of requirements with
transitions and states. The requirements associated
with a transition t must be satisfied to perform t,
while those associated with a state of N must con-
tinue to be satisfied in order for N to continue to
work properly. As requirements are satisfied when
the corresponding capability is provided, the require-
ments associated with transitions and states actually
indicate which capabilities must be offered (by other
nodes) to perform a transition or to continue to re-
side in a state.
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The description is completed by associating each state s
of N with the capabilities actually provided by N in s.

Fault-aware management protocols also allow to indi-
cate how N reacts when a fault occurs, i.e. when N is in
a state assuming some requirements to be satisfied, and
some other node stops providing the capabilities satisfy-
ing such requirements. This is described by a transition
relation ϕ that models the explicit fault handling of N by
specifying how N changes its state from s to s′ when some
of the requirements it assumes in s stop being satisfied.

Definition 1 (Fault-aware management protocols). Let
N = 〈SN , RN , CN , ON ,MN 〉 be a node, where SN , RN ,
CN , and ON are the finite sets of its states, require-
ments, capabilities, and management operations. MN =
〈sN , ρN , χN , τN , ϕN 〉 is a finite state machine defining the
fault-aware management protocol of N , where:

• sN ∈ SN is the initial state,

• ρN : SN → 2RN is a function indicating which re-
quirements must hold in each state s ∈ SN ,

• χN : SN → 2CN is a function indicating which capa-
bilities of N are offered in each state s ∈ SN ,

• τN ⊆ SN × 2RN × ON × SN is a set of quadruples
modelling the transition relation, viz., 〈s, P, o, s′〉 ∈
τN denotes that in state s, and if the requirements in
P are satisfied2, o is executable and leads to state s′,
and

• ϕN ⊆ SN × SN is a set of pairs modelling the fault
handling for a node, viz., 〈s, s′〉 ∈ ϕN denotes that the
node will change its state from s to s′ if some of the
requirements in ρN (s)− ρN (s′) stops being satisfied3.

Example 1. The fault-aware management protocols of the
nodes in our motivating scenario are shown in Fig. 3.

ConsiderMNginx, viz., the fault-aware management pro-
tocol of Nginx. The initial state of Nginx is NotInstalled,
where Nginx does not require nor provide anything. The
OS requirement is instead assumed to (continue to) be sat-
isfied in the states Installed and Started. If OS is faulted,
then Nginx goes back to its initial state (hence needing to
be re-installed and re-started). The AppRTE capability is

2The requirements P needed to perform a transition 〈s, P, o, s′〉 ∈
τN obviously need to include those needed in the starting state s and
in the target state s′. The relationship between ρN (s), ρN (s′), and
P is formalised in Sect. 3.2.

3The current formalisation of fault-aware management protocols
strictly generalises the one we proposed in [8], which required to ex-
plicitly indicate the set F of faulted requirements that are handled
by a fault handling transition. Indeed, a fault handling transition
〈s, s′〉 ∈ ϕN now handles all possible sets F of faulted requirements
such that ∅ ⊂ F ⊆ ρN (s) − ρN (s′), hence easing the specification
of fault-aware management protocols (especially because it signifi-
cantly reduces the amount of fault handling transitions that need
to be specified to ensure race-freedom while handling failures — see
Sect. 3.2).

MFrontend

MBackend

MNginx

MUbuntu

Figure 3: Fault-aware management protocols of the nodes in our
motivating example (Fig. 1). Solid arrows represent τ , while dashed
arrows represent ϕ.

concretely provided by Nginx only in the Started state. Fi-
nally, all management operations of Nginx can be executed
only if the OS requirement is satisfied.

Consider now MBackend, viz., the fault-aware manage-
ment protocol of Backend. One can readily observe that
MBackend is somehow “incomplete”: Backend assumes the
Server requirement to (continue to) be satisfied in the
Installed and Running states. However, MBackend does
not indicate what happens if such requirement is faulted
(since the corresponding capability stops being provided).
Sect. 3.3 shows how to deal with such a kind of’ “incom-
plete” management protocols, by illustrating how to auto-
matically complete them (by adding transitions for default
handling all unhandled faults).

It is worth observing that fault-aware management pro-
tocols (as per Def. 1) allow (i) the conditions on require-
ments of transitions to be inconsistent with respect to
those of their source and target states, and (ii) operations
to have non-deterministic effects when applied in a state.
Additionally, as faults are not going to be propagated syn-
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chronously (see Sect. 4), (iii) the simultaneous removal of
multiple requirements should have the same effect on a
node as any sequential removal of the same requirements.

To inhibit (i)-(iii), we assume that fault-aware man-
agement protocols enjoy some basic properties (viz., well-
formedness, determinism, and race-freedoom), which are
presented in the following section.

3.2. Characterising fault-aware management protocols

We now show how to formally define the constraints to
ensure well-formedness, determinism and race-freedom of
fault-aware management protocols.

A management protocol is well-formed if the conditions
on requirements of each transition t are consistent with the
source and target states. This means that (i) the require-
ments assumed to hold in the source state of t, as well as
those assumed to hold in its target state, must be assumed
to hold also during the transition, to avoid inconsistencies,
and (ii) faults only affect requirements that are assumed
in a state, and the handling of such faults should lead to
states where faulted requirements are no more assumed
and where no additional capabilities are provided.

Definition 2 (Well-formedness of fault-aware manage-
ment protocols). Let N = 〈SN , RN , CN , ON ,MN 〉 be a
node, and let MN = 〈sN , ρN , χN , τN , ϕN 〉 be its fault-
aware management protocol. MN is well-formed iff

(i) ∀〈s, P, o, s′〉 ∈ τN :
ρN (s) ∪ ρN (s′) ⊆ P , and

(ii) ∀〈s, s′〉 ∈ ϕN :
ρN (s′) ⊂ ρN (s) ∧ χN (s′) ⊆ χN (s)

It can be easily verified that all protocols in Fig. 3 are well-
formed, since (i) whatever transition t ∈ τ∗ we consider,
the set of requirements needed to fire t is the union of the
requirements assumed in the source and target states of
t, and since (ii) whatever transition f ∈ ϕ∗ we take, the
target state of f assumes less requirements and provides
less capabilities with respect to the source state of f .

A management protocol is also deterministic if (i) man-
agement operations have deterministic effects when ap-
plied in a state (viz., a state cannot have two outgoing
transitions corresponding to the same operation and lead-
ing to different states). Additionally, (ii) fault handling
transitions have to be uniquely determined by the sets of
requirements that are no more satisfied. Notice that, since
a fault handling transition 〈s, s′〉 ∈ ϕN handles the fault
of some of the requirements in ρ(s) − ρ(s′), condition (ii)
checks that there are no fault handling transitions outgo-
ing from a state and leading to two states that assume the
same set of requirements.

Definition 3 (Determinism of fault-aware management
protocols). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node,
and let MN = 〈sN , ρN , χN , τN , ϕN 〉 be its well-formed
fault-aware management protocol. MN is also determin-
istic iff

(i) ∀〈s1, P1, o1, s
′
1〉, 〈s2, P2, o2, s

′
2〉 ∈ τN :

(s1 = s2 ∧ o1 = o2)⇒ s′1 = s′2.

(ii) ∀〈s1, s′1〉, 〈s2, s′2〉 ∈ ϕN :(
s1 = s2 ∧ ρN (s′1) = ρN (s′2)

)
⇒ s′1 = s′2.

It can be easily verified that all protocols in Fig. 3 are
deterministic since there is no pair of transitions which
start from the same source state and lead to different states
by (i) applying the same operation or (ii) handling the
same faulted requirements.

Finally, it is worth noting that faults may not prop-
agate synchronously, i.e. when a capability is removed,
the nodes assuming the requirements satisfied by such ca-
pability eventually detect the removal, but in the mean-
while other capabilities might disappear (potentially rais-
ing other faults to be handled). For this reason, (the fault
handling in) management protocols should be race-free,
which means that the simultaneous removal of multiple
requirements should have the same effect on a node as any
sequential removal of the same requirements, if no oper-
ations are executed on the node in the meantime. More
precisely, (i) the relation ϕN has to be transitive, (ii) if the
fault of a set of requirements can be handled in a state s,
then the same faulted requirements have to be handled in
all states that can be reached from s and that have not yet
handled it, (iii) if the removal of two sets of requirements
is handled in a state, then the removal of their union has
to be handled in the same state, and (iv) the same must
hold for their intersection.

Definition 4 (Race-freedom of fault-aware management
protocols). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node,
and let MN = 〈sN , ρN , χN , τN , ϕN 〉 be its management
protocol. MN is race-free iff

(i) ∀〈s, s′〉, 〈s′, s′′〉 ∈ ϕN :
〈s, s′′〉 ∈ ϕN

(ii) ∀〈s, s′〉, 〈s, s′′〉 ∈ ϕN :
ρN (s′) ) ρN (s′′)⇒ 〈s′, s′′〉 ∈ ϕN

(iii) ∀〈s, s′〉, 〈s, s′′〉 ∈ ϕN :
∃〈s, s′′′〉 ∈ ϕN : ρN (s′′′) ⊆ ρN (s′) ∩ ρN (s′′)

(iv) ∀〈s, s′〉, 〈s, s′′〉 ∈ ϕN ∧ ρN (s) ) ρN (s′) ∪ ρN (s′′) :
∃〈s, s′′′〉 ∈ ϕN : ρN (s′′′) ⊇ ρN (s′) ∪ ρN (s′′)

Intuitively, the rules in Def. 4 ensure that, as long as no op-
eration occurs in-between, handling faults always leads to
the same state, even if novel faults occur in the meantime.
This can be easily observed by looking at Fig. 4:

(i) In a state s, handling the fault of a requirement
r2 and then the fault of a requirement r1 should
lead to the same state s′′ as simultaneously handling
both faults. If this was not the case, depending on
whether the fault of r1 occurs before or after han-
dling the fault of r2, the node may end in different
states (hence meaning that its protocol is not race-
free).
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(i)

(ii)

(iii)

(iv)

Figure 4: Examples of fault-aware management protocols illustrating
the meaning of rules (i), (ii), (iii) and (iv) of Def. 4. Lighter arrows
satisfy the pre-conditions of each rule, while thicker arrows satisfy
their post-condition.

(ii) For similar reasons, if the faults of two requirements
r1 and r2 can be handled simultaneously by leading
a node from state s to state s′′, and if the fault of
r2 can also be handled “per se” by leading the same
node from state s to state s′, then it should be possi-
ble to handle the fault of r1 in state s′ and its handler
should end in s′′. This would again ensure that, in-
dependently on whether the fault of r1 occurs before
or after the handling of the fault of r2, the node ends
in the same state s′′.

(iii) If there exist two different transitions handling the
fault of a requirement r1 and that of a requirement r2
in a state s, then there should be a third transition
simultaneously handling the fault of both require-
ments in s. If this is not the case, then the node
may not be capable of handling the simpler faults of
either r1 or r2 and their combination (viz., the fault

of both r1 and r2) in a deterministic way.

(iv) Suppose that there exist two fault handling transi-
tions outgoing from a state s, one simultaneously
handling the fault of both requirements r1 and r3
and the other simultaneously handling the fault of
both requirements r2 and r3. If this is the case, then
there should be a third transition handling the fault
of only r3. Otherwise, the node may not be capable
of handling the simpler fault of r3 in a deterministic
way (as it would have to non-deterministically choose
one between the two fault handling transitions in our
hypothesis).

Remark 1. More in general, conditions (i) and (ii) in Def. 4
ensure that the simultaneous removal of multiple require-
ments have the same effect on a node as their two different
sets of requirements have the same effect on a node as any
sequential removal of the same requirements (if no opera-
tions are executed in the meantime). Condition (iii-iv) in-
stead ensure that a node can deterministically choose how
to handle simple faults and their compositions. All con-
ditions (i-iv) are hence needed to ensure that fault-aware
management protocols are race-free4.

It can be easily verified that all protocols in Fig. 3 are
race-free.

3.3. Completing fault-aware management protocols

As illustrated by Example 1, the management protocol of
a node may leave unspecified how the component will be-
have in case some requirements stop being fulfilled in some
states. To explicitly model that (by also preserving well-
formedness, determinism, and race-freedom) management
protocols can be completed by adding default transitions
for all unhandled faults. All such transitions lead a node
to its “sink” state s that requires and provides nothing
(as this models the —worst-case– scenario where a node
stops interacting with the other nodes in an application
because of an unhandled fault).

Definition 5 (Completing fault-aware management pro-
tocols). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node, where
MN = 〈sN , ρN , χN , τN , ϕN 〉 is its fault-aware manage-
ment protocol. The management protocolMN can be com-
pleted by replacing SN , ρN , χN and ϕN with

S′N = SN ∪ {s },
ρ′N s.t. ∀s ∈ SN : ρ′N (s) = ρN (s) ∧ ρ′N (s ) = ∅,

χ′N s.t. ∀s ∈ SN : χ′N (s) = χN (s) ∧ χ′N (s ) = ∅, and

ϕ′N = ϕN ∪ {〈s, s 〉 | s ∈ SN ∧ ρN (s) 6= ∅ ∧
@〈s, s′〉 ∈ ϕN : ρN (s′) = ∅}

where s 6∈ SN .

4Notice also that partially specified ϕ relations can be automati-
cally completed by applying the rules in Def. 4.
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In the following we will assume fault-aware management
protocols to be automatically completed as defined above.
Intuitively speaking, this will ensure that composite appli-
cations will always be able to propagate whatever fault of
their nodes, as from each state of a node N it will always
be possible to react to the removal of any of its require-
ments (through one of the transitions in the original ϕN ,
or through those introduced in ϕ′N ).

Example 2. The fault-management protocol of Backend
(MBackend in Fig. 3) is completed as illustrated in Fig. 5.
We include a new state (Backend ), and two new tran-
sitions handling the fault of the Server requirement in
the states Installed or Running by making Backend end
in Backend . The latter acts as a “sink”, as while there
are transitions allowing Backend to end in the Backend 
state, there is no transition outgoing from such state.

Figure 5: Completion of the fault-aware management protocol
MBackend (Fig. 3), obtained by applying the rules in Def. 5.

All other management protocols in Fig. 3 are completed
in a simpler way. Each protocol indeed handles all poten-
tial faults, hence making their completion only requiring to
add a sink state to each of them (viz., the state Frontend 
is added to the management protocol of Frontend, Nginx 
to that of Nginx, and Ubuntu to that of Ubuntu).

4. Analysing application management

In this section we illustrate how to analyse and auto-
mate the management of composite applications in a fault-
resilient manner. Namely, we show how the fault-aware
management behaviour of a composite application can be
determined by composing the protocols of its nodes ac-
cording to the application topology (Sect. 4.1). We then
describe how to determine whether a plan orchestrating
the management of a composite application is valid, which
are the effects of a management plan, and how this also
permits finding plans to achieve specific goals (Sect. 4.2).

Even if application components are described by fault-
aware management protocols, the actual behaviour of com-
ponents may differ from the described one (e.g., because of
non-deterministic bugs [6]). In Sect. 4.3 we show how the
unexpected behaviour of a component can be modelled by
automatically completing its management protocols, and

how this permits analysing the (worst possible) effects of a
misbehaving component on the rest of an application. We
also illustrate a way to hard recover applications that are
stuck because a fault was not properly handled, or because
of misbehaving components (Sect. 4.4).

4.1. Management behaviour of an application

We hereby show how to determine the fault-aware manage-
ment behaviour of an application by composing the fault-
aware management protocols of its components. To sim-
plify the formalisation, we exploit some shorthand nota-
tions to denote generic composite applications, the nodes
in their topology, and the connections among the require-
ments and capabilities of such nodes (e.g., to denote that
AppRTE is the capability connected to the Server require-
ments in our motivating scenario — Fig. 1).

Notation 1. We denote with A = 〈T, b〉 a generic com-
posite application, where T is the finite set of nodes in
the application topology, and where the connections among
nodes is described by a (total) binding function

b :
⋃

N∈T
RN →

⋃
N∈T

CN

associating each requirement of each node with the capa-
bility that satisfies such requirement.

Remark 2. For simplicity, and without loss of generality,
we assume that the names of states, requirements, capa-
bilities, and operations of a node are all disjoint. We also
assume that, given two different nodes in a topology, the
names of their states, requirements, capabilities, and op-
erations are naturally disjoint.

Formally, the semantics of the management protocols in
a composite application A = 〈T, b〉 can be defined by a
labelled transition system over configurations that denote
the states of the nodes in T . Intuitively, G

o−→A G′ is a
transition denoting that operation o can be executed (on
a node) in A when the “global” state of A is G, making A
evolve into the new global state G′. Hence, we first need
to formally define the notion of global state for a compos-
ite application. The latter is essentially a set G containing
only the current state of each of the nodes forming a com-
posite application.

Definition 6 (Global state). Let A = 〈T, b〉 be a com-
posite application, and let us denote with 〈SN , RN , CN ,
ON ,MN 〉 the tuple corresponding to a node N ∈ T . A
global state G of A is a set of states such that:

G ⊆
⋃

N∈T
SN ∧ ∀N ∈ T : |G ∩ SN | = 1

We denote by G the initial global state of A, where each
node in T is in its initial state (viz., G =

⋃
N∈T sN ).
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Remark 3. The condition ∀N ∈ T : |G∩SN | = 1 in Def. 6
ensures that a global state G contains exactly one state
for each node N in T (which is actually the current state
of N in G). This is because a node cannot be in two or
more different states at the same time.

We also define a function F to denote the set of pending
faults in G, namely the set of requirements assumed in G
despite their corresponding capabilities are not provided.
To do so, we need some shorthand notations to indicate
the requirements assumed and the capabilities provided in
a global state, and the set of capabilities bound to a given
set of requirements.

Notation 2. Let G be a global state of a composite appli-
cation A = 〈T, b〉. We denote with ρ(G) the set of require-
ments that are assumed to hold by the nodes in T when A
is in G, with χ(G) the set of capabilities that are provided
by such nodes in G, and with b(R) the set of capabilities
bound to the requirements in R. Formally:

ρ(G) =
⋃

N∈T
{ρN (s) | s ∈ G ∧ s ∈ SN},

χ(G) =
⋃

N∈T
{χN (s) | s ∈ G ∧ s ∈ SN}, and

b(R) =
⋃
r∈R
{b(r)}.

Definition 7 (Pending faults). Let A = 〈T, b〉 be a com-
posite application, and let G be a global state of A. The
set F (G) of pending faults in G is defined as follows:

F (G) = {r ∈ ρ(G) | b(r) 6∈ χ(G)}.

The management behaviour of a composite application
A = 〈T, b〉 is then given by a labelled transition system,
whose configurations are the global states of A. The tran-
sition system is characterised by two simple inference rules,
op for operation execution and fault for fault propagation.
The former permits executing a management operation o
on a node N ∈ T only if there are no pending faults and all
the requirements needed by N to perform o are satisfied
(by the capabilities provided by other nodes in T ). The
latter illustrates how to execute fault handling transitions
when there are pending faults.

Definition 8 (Management behaviour of a composite ap-
plication). Let A = 〈T, b〉 be a composite application,
and let us denote with 〈SN , RN , CN , ON ,MN 〉 the tu-
ple corresponding to a node N ∈ T . Let also MN =
〈sN , ρN , χN , τN , ϕN 〉. The management behaviour of A
is modelled by a labelled transition system whose config-
urations are the global states of A, and whose transition
relation is defined by the following inference rules:

s ∈ G 〈s, P, o, s′〉 ∈ τN
F (G) = ∅ b(P ) ⊆ χ(G)

G
o−→ (G− {s}) ∪ {s′}

(op)

s ∈ G 〈s, s′〉 ∈ ϕN ρN (s′) ⊆ ρN (s)− F (G)
@〈s, s′′〉 ∈ ϕN .ρN (s′) ( ρN (s′′) ⊆ ρN (s)− F (G)

G
⊥−→ (G− {s}) ∪ {s′}

(fault)

The op rule indicates how to update the global state
of an application A when a node N executes a transition
〈s, P, o, s′〉 ∈ τN . A transition 〈s, P, o, s′〉 can be executed
only if both following conditions hold:

• F (G) = ∅, i.e. there are no pending faults in G, and

• b(P ) ⊆ χ(G), i.e. all requirements needed to perform
the transition are satisfied in G.

The actual execution of 〈s, P, o, s′〉 updates the current
state of N from s to s′, hence requiring the global state
of A to be updated (viz., G′ = (G − {s}) ∪ {s′}), and
potentially triggering faults to be handled (if F (G′) 6= ∅).

The fault rule instead models fault propagation, by in-
dicating how to update the global state of an application
A when executing the fault handling transition 〈s, s′〉 of
a node N . Such transition can be performed only if both
following conditions hold:

• ρN (s′) ⊆ ρN (s) − F (G), which ensures that 〈s, s′〉
handles all faults pending in G and affecting N . The
target state s′ indeed does not assume any of the re-
quirements in the set F (G) of pending faults (since
ρN (s′) is contained in the set difference ρN (s)−F (G)).

• @〈s, s′′〉 ∈ ϕN .ρ(s′) ( ρ(s′′) ⊆ ρ(s)− F (G), which en-
sures that, among all executable fault handling tran-
sitions, 〈s, s′〉 is the transition whose target state s′

assumes the biggest set of requirements. In this way,
the fault handling transition is guaranteed to handle
all the faults on the node, while at same time min-
imising the amount of requirements that stop being
assumed (even though the corresponding capabilities
continue to be provided).

By executing 〈s, s′〉 the current state of N changes from
s to s′, hence requiring to update the global state of A
accordingly (viz., G′ = (G− {s}) ∪ {s′}). Also, the faults
of the requirements in ρN (s)−ρN (s′) are not pending any
more, and new faults may be triggered (if F (G′) 6= ∅).

Example 3. Fig. 6.(a) shows the evolution of a global state
G when executing the operation Stop of Backend when all
components are up and running. The pre-conditions of the
op rule are all satisfied, as there are no pending faults in the
starting G, and since all requirements needed to execute
the considered transition are satisfied. By executing the
transition, G is updated by changing the current state of
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(a)

(b)

Figure 6: Examples of execution of the rules (a) op and (b) fault in
Def. 8. For reasons of readability, global states and pending faults are
represented as tables associating node names with their actual state
and with their faulted requirements, respectively. Transitions are
displayed as labelled arrows, and each update due to the execution
of a transition is highlighted in grey in the target global state.

Backend (from Running to Installed), and a new fault is
triggered. Frontend is indeed assuming its requirement
Backend to be satisfied, but Backend is not providing the
corresponding capability any more.

The triggered fault can be handled by applying the fault
rule, as illustrated in Fig. 6.(b). Frontend actually has two
transitions that can handle the fault of the requirement
Backend when it is in state Connected, leading to its states
Started and NotAvailable, respectively (see MFrontend in
Fig. 3). As the state Started is assuming more require-
ments than the state NotAvailable, the fault rule mandates
to execute the transition leading to Started, hence updat-
ing the global state G as shown in Fig. 6.(b).

4.2. Analysing management plans

The management behaviour of a composite application A
(Def. 8) lays the foundations for analysing the manage-
ment of A. The management behaviour of A indeed per-
mits defining the notion of validity for sequences of man-
agement operations and for management plans as follows.

Notation 3. Given a composite application A = 〈T, b〉, we
denote with PA a management plan for A, viz., a workflow
orchestrating the management operations of the nodes in
T to carry out a management task for A.

Definition 9 (Valid plan). Let A = 〈T, b〉 be a composite
application. The sequence o1o2...on of management oper-
ations in A is valid in a global state G0 of A iff

∃G1, G2, ...Gn : G0
o17−→ G1

o27−→ G2
o37−→ . . .

on7−→ Gn

where

G
o−→ G′

G
o7−→ G′

(o) G
o7−→ G′ G′

⊥−→ G′′

G
o7−→ G′′

(⊥)

A management plan PA is valid in G0 iff all its sequential
traces are valid in G0.

Remark 4. The second rule (⊥) of the transition system
o7−→

in Def. 9 permits focusing on the transitions correspond-
ing to the execution of operations (by abstracting from all

transitions G′
⊥−→ G′′ that handle faults possibly raised

after the execution of an operation o).

In case we wish to ensure that no fault is raised while
executing a management plan, we should require such plan
to be fault-free too.

Definition 10 (Fault-free plan). Let A be a composite
application, and let G be a global state. Let also PA be a
valid management plan in G. PA is fault-free if no fault

handling transition G
⊥−→ G′ is performed in any of its

sequential traces.

Example 4. Consider the management plans in Fig. 2. One
can readily check that plan (c) is valid and fault-free, since
all its sequential traces are valid sequences of operations,
and since none of its sequential traces is executing a fault
handling transition.

One of the sequential traces of plan (c) is illustrated in
Fig. 7. The figure shows how the global state G of the mo-
tivating scenario changes while executing the operations in
the trace, and how the set F (G) of pending faults remains
empty throughout the execution of the whole trace.

Figure 7: Evolution of the global state G and of the set of pending
faults F (G) according to a valid sequential trace of plan (c) in Fig. 2.

Conversely, plans (a) and (b) in Fig. 2 are not valid since
their traces are not valid. More precisely, plan (a) is not
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valid since all its sequential traces produce the derivation
shown in Fig. 8, and Nginx:Configure cannot be executed
in the reached global state (because it requires Nginx to
be in state Working, instead of Stopped).

Figure 8: Initial evolution of the global state G and of the set of
pending faults F (G) according to plan (a) in Fig. 2.

On the other hand, plan (b) is not valid since some of
its sequential traces (such as that shown in Fig. 9) reach a
global state where Frontend:Configure cannot be executed.
The latter is because Frontend:Configure requires the ca-
pability satisfying the Backend requirement of Frontend
to be actually provided, but that capability is not pro-
vided when the node Backend is not in state Running (see
MFrontend and MBackend in Fig. 3).

Figure 9: Initial evolution of the global state G and of the set of
pending faults F (G) according to plan (b) in Fig. 2.

The management behaviour of composite applications
(Def. 8) can be exploited not only for checking the validity
and fault-freedom of management plans, but also for vari-
ous other purposes. For instance, as there is no assurance
that all the sequential traces of a management plan end

in the same global state, it is interesting to characterise
deterministic plans.

Definition 11 (Deterministic plan). Let G be a global
state of a composite application A. A valid management
plan PA is deterministic from G iff all its sequential traces
end in the same global state.

Remark 5. An obvious approach for checking validity,
fault-freedom or determinism of management plans is a
visit of the graph associated with the transition system
modelling the management behaviour of an application
(Def. 8). The constraints on fault-aware management pro-
tocols (which are assumed to be well-formed, deterministic
and race-free), along with the way they are combined, en-
sure that such a graph is finite, hence guaranteeing its visit
to terminate.

It is also interesting to understand what happens to an
application A when executing a valid plan PA. For in-
stance, one may wish to determine the actual states of the
components of A after executing PA, which capabilities
they provide, and which requirements they assume to be
satisfied. Such information can be excerpted directly from
the global state(s) reached by the sequential traces of PA.

Moreover, the problem of finding whether there is a de-
ployment plan which starts from the initial global state
G and achieves a specific management goal (e.g., bringing
an application to a certain global state, or making some
capabilities available) can be solved with a breadth-first
search of the graph of reachable global states. The same
approach also works in the case of generic management
plans (i.e., plans starting from a generic global state G),
and it permits finding the sequential plans (if any) allowing
to reach a certain goal from whatever starting G.

Remark 6. Deployment/management plans are automati-
cally determined by visiting the graph of reachable global
states, viz., the graph associated with the transition
system of the management behaviour of an application
(Def. 8). Their validity is hence ensured “by construc-
tion”, as each path in the graph of reachable global states
corresponds to a valid sequence of operations.

With the above approach, we can also characterise an
interesting property that may be exhibited by a composite
application A. If the initial global state G can be reached
from any G that is reachable from G itself, then all valid
sequences of management operations are reversible (as we
can always find another sequence of management opera-
tions leading back to G). This in turn means that we can
always (soft) reset the application A.

Definition 12 (Soft-resettability). Let A be a compos-
ite application, and let G be its initial global state. We
say that A is softly resettable iff for each global state G
reached by executing a valid sequence of operations from G,
there exists a valid sequence of operations from G whose
execution leads back to G.
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The above is a very convenient property, because it guar-
antees that it is always possible to generate a plan for any
reachable goal from any application state.

One can readily check that the application in our moti-
vating scenario (Fig. 1) is not softly resettable, since Back-
end can enter its sink state Backend (Fig. 5) and there
is no way to get it back to its initial state. A way to
hard recover applications that are stuck because of a node
entering in its sink state is presented in Sect. 4.4.

4.3. Modelling and analysing “the unexpected”

The analyses presented in the previous sections assume
that application components behave according to their
specified management protocols. However, the actual be-
haviour of an application component may be different from
that modelled in its fault-aware management protocol,
e.g., because of non-deterministic bugs [6]. We hereby il-
lustrate a way to deal with such a kind of situations.

The unexpected behaviour of application components
can be naturally modelled with fault-aware management
protocols. This indeed only requires to add a “crash” op-
eration  to each node, and to automatically complete its
fault-aware management protocol with “crash” transitions
leading such node to its sink state.

Definition 13 (Fault-aware management protocols with
unexpected behaviour). Let N = 〈SN , RN , CN , ON ,MN 〉
be a node, where MN = 〈sN , ρN , χN , τN , ϕN 〉 is its fault-
aware management protocol. The management behaviour
of N can be extended to include unexpected behaviour by
replacing ON and τN with:

• O′N = ON ∪ { }, and

• τ ′N = τN ∪ {〈s, ρ(s), , s 〉 | s ∈ SN}.

Remark 7. The construction rules in Def. 13 permit
automatically extending fault-aware management proto-
cols by preserving determinism, well-formedness, and
race-freedom of fault-aware management protocols. In
particular, to ensure well-formedness, each transition
〈s, ρ(s), , s 〉 can be fired only if the requirements in ρ(s)
are satisfied. Notice that this is not a restriction since such
requirements are satisfied in s by definition of fault-aware
management protocols (Def. 1).

By applying the analyses presented in Sect. 4.2 to fault-
aware management protocols including unexpected be-
haviour (Def. 13), we can analyse and automate the man-
agement of a composite application also in presence of mis-
behaving components. The  transitions indeed model
the case of a node behaving unexpectedly, by leading such
node to its sink state. As we (pessimistically) assume that
a node is no more offering any of its capabilities when it
enters its sink state, by firing a  transition we can anal-
yse the (worst possible) effects of a misbehaving node on
the rest of an application. The latter indeed only requires
to observe the changes that occur to the global state of a
composite application after firing a  transition.

Example 5. Consider again the fault-aware management
protocol of Backend (viz.,MBackend in Fig. 3), completed
by adding its sink state Backend as discussed in Exam-
ple 2. The extension described in Def. 13 simply consists
in automatically including a set of “crash” transitions that
start from the states NotInstalled, Installed, and Running,
and which lead to the Backend state5. The resulting pro-
tocol is depicted in Fig. 10.

Figure 10: Extension of the fault-aware management protocol
MBackend in Fig. 5, which includes all  transitions modelling the
unexpected behaviour of Backend.

The above extension allows to analyse the (worst-
possible) effects of a misbehaving Backend on the rest of
the application in our motivating scenario. For instance,
we can determine the effects of a “crashing” Backend when
the whole application is up and running. By executing the
operation  of Backend, the global state of the application
is changed as shown in Fig. 11. Namely, the state of Back-

Figure 11: Example of evolution of the global state G and of the set
of pending faults F (G) after injecting a fault in Backend.

end is updated, by also filling the set of pending faults
with the Backend requirement of Frontend (since Fron-
tend is assuming such requirement in its Connected state,
but the corresponding capability is no more provided by
Backend). The pending fault is then consumed by a ⊥-
transition, which updates the state of Frontend.

We now need a solution to recover composite applica-
tions that got stuck because one or more of their compo-
nents are behaving unexpectedly. From the global state

5The fault-aware management protocols of the other nodes in
our motivating scenario (i.e., Frontend, Nginx and Ubuntu) can be
extended analogously.
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reached after injecting a failure (by executing a  transi-
tion), we may indeed wish to determine a “recovery” plan
allowing to reach a given recovery goal (e.g., bringing the
application back to the global state in which the failure
was injected). Such a plan cannot be determined by di-
rectly applying the analyses presented in Sect. 4.2 (e.g., by
visiting the graph associated with the labelled transition
system modelling the management behaviour of a compos-
ite application). This is because, after injecting a crash
in a node, the latter is stuck in its sink state (since no
transition outgoes from such state). However, fault-aware
management protocols can be naturally extended to per-
mit automatically generating recovery plans, as we will see
in the next section.

4.4. Hard recovering stuck applications

We hereby illustrate how to automatically determine plans
allowing to recover application that are stuck because one
of more of their nodes entered their sink state (e.g., be-
cause a fault was handled by a transition that led to the
node’s sink state, or because the node was behaving unex-
pectedly and a crashing transition  was fired).

The underlying idea is quite simple. If a node N is stuck
in its sink state, then the only way to “hard” reset N is
to reset the node N ′ in which N is contained (i.e., by
the node in which it is installed or deployed). Indeed,
by resetting N ′, all the nodes that are contained in N ′

(including the stuck node N) are forcibly reset to their
initial state. This in turn results in unlocking N , hence
allowing to recover it (e.g., by re-executing the operations
to install and start it).

We hereby show how to automatically extend the mod-
elling of an application so that hard recovery plans can
be naturally determined with a visit of the graph associ-
ated with the transition system defined by the (extended)
management behaviour of the application.

Notation 4. For the sake of readability, we shall denote
by cont(N) the node in which N is contained (e.g., in our
motivating example, cont(Frontend) = Nginx). If N is not
contained in any other node, then cont(N) is not defined
(e.g., in our motivating example, cont(Ubuntu) = ⊥).

Our aim is to permit hard resetting a node N ∈ T when-
ever it is stuck in its sink state, by restarting the node
cont(N) that contains N . This can be obtained with our
analysis approach, provided that the modelling of the ap-
plication is updated as follows: The application topology
is extended by explicitly representing node containment,
and the fault-aware management protocols of the applica-
tion components are updated to permit forcibly resetting
container nodes whenever needed.

To explicitly represent node containment, we model an
application A = 〈T, b〉 into an application A′ = 〈T ′, b′〉,
where T ′ and b′ are built as follows:

• Each node N in the topology T is equipped with a
capability alivecN whose purpose is to “attest” whether

Figure 12: Motivating scenario: updated topology.

N is still installed to the nodes it contains. If N is
contained in another node N ′, then N is also equipped
with a requirement aliverN whose purpose is to permit
checking whether its container N ′ is still installed.

• The function b is updated by adding the bindings
among the newly introduced requirements and capa-
bilities. Each requirement aliverN is bound to the ca-
pability alivecN ′ , where N ′ is the node containing N
(viz., N ′ = cont(N)).

Example 6. In our motivating scenario (Fig. 1) the above
construction results in updating the application topology
as illustrated in Fig. 12. All nodes (but Ubuntu) are
equipped with alive requirements and capabilities. Ubuntu
is only provided with an alive capability. Then, since Fron-
tend and Backend are contained in Nginx, the alive re-
quirements of Frontend and Backend are connected with
the alive capability of Nginx. Additionally, since Nginx
is contained in Ubuntu, the alive requirement of Nginx is
connected to the alive capability of Ubuntu.

The updated application topology permits to container
nodes to attest that they continue to be installed (by pro-
viding their alivec capability), and to contained nodes to
check whether they continue to be installed (by assum-
ing their aliver requirement). This requires to update
the management protocol MN = 〈sN , ρN , χN , τN , ϕN 〉
of each node N ∈ T by substituting it with M′N =
〈sN , ρ′N , χ′N , τ ′N , ϕ′N 〉, which is built as follows:

• All states in SN (but the initial one) can be reached
by N only if the container of N continues to be in-
stalled. Hence, the function ρN is updated by making
all states (but the initial one) assuming the require-
ment aliverN in addition to the requirements they al-
ready assume.

• Whenever N is not in its initial state, it can be consid-
ered as “alive” (as it is ensured that it has performed
some operation to get there). To attest this fact, the
function χN is updated by making all states (but the
initial one) providing the alivecN capability in addition
to those they already provide.
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MBackend

MNginx

Figure 13: Extension of the fault-aware management protocols
MBackend and MNginx obtained by enabling hard recovery. The
extension of MFrontend and MUbuntu is similar.

• Each transition in τN requires the container of N (if
any) to be alive. This means that each transition in
τN has to constrain its executability to the satisfaction
of the requirement aliverN .

• Finally, the fault handling relation ϕN has to be ex-
tended to handle the potential fault of the aliverN re-
quirement (if any). If such requirement stops being
satisfied, this means that the node in which N is con-
tained has been reset, which in turns means that also
N has been (hard) reset. Hence, ϕN has to be ex-
tended by adding all transitions handling the fault of
the requirement aliverN by making N go back to its
initial state sN .

Example 7. The fault-aware management protocols in our
motivating scenario can be updated as shown in Fig. 13,
which illustrates the updated protocols of Nginx and Back-
end. Both protocols are such that the corresponding nodes
assume their requirement alive to be satisfied (i.e. they as-
sume their containers to continue to be installed) in each
of their states but the initial one. They are also providing
their capability alive in such states, to attest to the nodes
they contain (i.e., Nginx contains Frontend and Backend,
while Backend is not containing any node) that they con-
tinue to be there.

Notice that, whenever the requirement alive of Nginx
or Backend is faulted, the corresponding node returns to

its initial state. Hence, if the node containing Nginx is
uninstalled, then Nginx is uninstalled along with it. The
same holds for Backend, which is forcibly reset to its initial
state whenever its container node is uninstalled.

The construction explained above is formalised by the
following definition, which provides the rules to enable
hard recovery in A = 〈T, b〉.

Definition 14 (Enabling hard recovery). Let A =
〈T, b〉 be a composite application, and let N =
〈SN , RN , CN , ON ,MN 〉 be a node in T , with MN =
〈sN , ρN , χN , τN , ϕN 〉. To enable hard recovery, A is
adapted into a new composite application A′ = 〈T ′, b′〉,
where T ′ and b′ are built according to the following con-
struction rules.

T ′ is built as follows:

〈SN , RN , CN , ON ,MN 〉 ∈ T ⇒
〈SN , R

′
N , C

′
N , ON ,M′N 〉 ∈ T ′

where

R′N =

{
RN ∪ {aliverN} if cont(N) 6= ⊥
RN otherwise

C ′N = CN ∪ {alivecN}

and where M′N = 〈sN , ρ′N , χ′N , τ ′N , ϕ′N 〉 is built as follows

ρ′N (s) =

{
ρN (s) ∪ {aliverN} if s 6= sN ∧ cont(N) 6= ⊥
ρN (s) otherwise

χ′N (s) =

{
χN (s) ∪ {alivecN} if s 6= sN

χN (s) otherwise

τ ′N = {〈s1, P, o, s2〉 | 〈s1, P ′, o, s2〉 ∈ τN}, with

P ′ =

{
P ∪ {aliverN} if cont(N) 6= ⊥
P otherwise

ϕ′N = ϕN ∪ {〈s, sN 〉 | s ∈ SN − {sN} ∧ aliverN ∈ ρ′N (s)}

b′ is built as follows:

b′(r) =

{
alivecN ′ if r = aliverN and cont(N) = N ′

b(r) otherwise

Remark 8. The construction rules for enabling hard re-
covery (Def. 14) are fully constructive, and they preserve
determinism, well-formedness and race-freedom of fault-
aware management protocols. Hence, the modelling of a
composite application can be automatically updated to en-
able/disable hard recovery in such application. Such up-
date is done seamlessly and transparently to the owner of
the application.

Remark 9. Hard recovery permits recovering a node that is
stuck (independently from the kind of failure that made it
become stuck), provided that such node is contained in an-
other node. Hence, it cannot be exploited to recover nodes
that are not contained in any other node (like Ubuntu in
our motivating example — Fig. 1).
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The construction rules enabling hard recovery (Def. 14),
combined with the analyses presented in Sect. 4.2, permit
analysing the management behaviour of a composite ap-
plication by also considering the possibility of hard reset-
ting a node N , to unlock the nodes contained in N that
are stuck in their sink states. For instance, the notion of
validity (Def. 9) can be reused to check whether a hard
recovery plan is valid, and it is also possible to analyse
the effects of a hard recovery plan. More interestingly, we
can automatically determine a plan recovering the desired
global state of an application by simply visiting the graph
associated with the labelled transition system modelling
the application’s management behaviour.

Example 8. Consider again our motivating scenario
(Fig. 1), and suppose that the application is stuck in the
global state reached in Fig. 11. By updating the modelling
of the application as illustrated in Examples 6 and 7, it is
possible to plan the (hard) recovery of the application from
such “stuck” global state.

The only way to let Backend exit from its Backend 
state is to remove its alive requirement. This corresponds
to making Nginx stop providing its alive capability, which
in turn makes Nginx go back to its initial state. This can
be obtained by executing the operations Shutdown and
Uninstall of Nginx itself, and it results in resetting also
the Frontend, which goes back to its initial state. We can
then (re-)execute the operations to Install and Start Nginx,
to Setup and Run Backend and Frontend, and to Connect
Frontend (to Backend).

The above listed operations permit building the hard
recovery plan in Fig. 14. It can be trivially verified that
such plan is valid in the “stuck” global state reached in
Fig. 11, and that it permits recovering the application by
making all its nodes be up and running again. As we
already mentioned, the above recovery plan can be auto-
matically determined by visiting the graph associated with
the transition system defined by management behaviour
of the application (provided that the modelling of the ap-
plication has been automatically updated according to the
construction rules in Def. 14 — see Examples 6 and 7).

5. Proof-of-concept implementation

We hereby present Barrel, an interactive tool for editing
and analysing fault-aware management protocols in com-
posite applications specified in TOSCA6 (Topology and
Orchestration Specification for Cloud Applications).

5.1. Implementation of Barrel

Barrel is implemented as a web-based application7,
which can be run in any modern web browser (e.g., Mi-

6Interested readers can find in [7] the specification of TOSCA,
and in [11] a self-contained introduction to TOSCA.

7A running instance of Barrel can be accessed at http:

//di-unipi-socc.github.io/barrel/. The source code of Bar-
rel is publicly available on GitHub at https://github.com/

di-unipi-socc/barrel.

crosoft Edge, Google Chrome or Mozilla Firefox). It is
composed by two main components, namely a graphical
user interface and a back-end (Fig. 15).

The graphical user interface of Barrel is implemented
as a HTML5/CSS3 page (index.html), which is dynam-
ically populated by a set of JavaScript scripts (Barrel-
react.js, Barrel-visualiser.js, Barrel-analyser.js, etc.). The
scripts exploit the ReactJS library (https://reactjs.
org/) and the support offered by the back-end of Bar-
rel to reactively update the content and functionalities
offered by the GUI.

The back-end of Barrel is implemented with a set of
TypeScript modules. Their purpose is essentially to im-
plement all the business logic needed to (i) import/export
TOSCA applications, (ii) edit the fault-aware management
protocols of their components, and (iii) analyse their man-
agement behaviour.

(i) CSAR.ts and TOSCA.ts implement the logic for
importing and exporting TOSCA applications.
More precisely, CSAR.ts provides the functionalities
needed for importing and exporting a CSAR (Cloud
Service ARchive [7]), which is the standard packaging
for TOSCA applications. TOSCA.ts instead imple-
ments a parser for the TOSCA application specifica-
tion contained within an imported CSAR.

(ii) ManagementProtocols.ts implements a TypeScript
class modelling the fault-aware management protocol
of an application component. It also allows to edit
the fault-aware management protocol of a compo-
nent, by providing methods that permit updating the
sets of requirements/capabilities assumed/provided
in a state, and for adding and removing transitions
corresponding to the execution of a management op-
eration or to the handling of some faults.

(iii) Analysis.ts implements a generic support for all the
analyses described in Sect. 4. More precisely, it im-
plements a TypeScript class modelling a compos-
ite application, and which permits simulating its
management behaviour (e.g., by allowing to check
whether a node can perform an operation or whether
there are settling handlers for pending faults, and to
simulate the execution of the corresponding transi-
tions). Analysis.ts also permits determining all the
global states that can be reached by an application,
as well as the plans allowing to move from each reach-
able global state to each other8.

8More precisely, Analysis.ts permits creating a matrix whose
(i, j)-th element is the next step on the shortest path from the reach-
able global state i to the reachable global state j, which can then
be exploited to reconstruct the shortest path from a starting global
state to a target global state. The matrix, as well as the shortest
path from a global state to another, are obtained by implementing
the Floyd-Warshall algorithm [12].
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Figure 14: Example of hard recovery plan.

Figure 15: The architecture of the prototype of Barrel. Dashed
rectangles represent the main components of Barrel, solid rectan-
gles represent implemented modules, and arrows represent dependen-
cies between modules (by indicating whether a component directly
exploits functionalities provided by another component).

TOSCAAnalysis.ts then integrates the functionalities pro-
vided by TOSCA.ts, ManagementProtocols.ts and Analy-
sis.ts to permit analysing the management behaviour of
TOSCA applications.

Barrel is already partially integrated with the Open-
TOSCA open-source ecosystem [13, 14, 9]. Indeed, Bar-
rel can process CSARs developed with the visual editor
Winery [9], and it produces CSARs that can be edited in
Winery, offered by the self-service portal Vinothek [14],
and executed by the TOSCA engine OpenTOSCA [13].

Of course, despite Winery, Vinothek and OpenTOSCA
can get as input CSARs exported from Barrel, they are
not yet capable of processing the behaviour information
specified by fault-aware management protocols. This is be-
cause Barrel exploits a backward-compatible extension
of TOSCA that includes fault-aware management proto-
cols, which is not yet supported by the tools in the Open-
TOSCA open-source environment.

5.2. How to use Barrel

As TOSCA applications are shipped within CSAR pack-
ages, the very first step is to take an existing CSAR (devel-
oped with Winery [9], for instance), and then to import it
in Barrel to edit and analyse the management protocols
of the TOSCA application it packages. CSAR packages
can be imported in Barrel by clicking on the CSAR op-
tion in the navigation bar of Barrel. Once a CSAR is
loaded, the Visualise, Edit, and Analyse panes become se-
lectable in the navigation bar (and the Visualise pane is
selected by default).

Visualising applications. The Visualise pane graph-
ically displays the application specification contained in

the imported CSAR (Fig. 16.(a)).
The name of the application is placed in the top-left

corner of the Visualise pane. The application topology is
visualised in the left-hand side of the pane, by drawing all
nodes composing such topology, their requirements and ca-
pabilities (over and under each node, respectively), and all
relationships binding a requirements of a node with a ca-
pability of another node. Further information about each
node (such as the node type or the management operations
it offers) is listed in the table placed in the right-hand side
of the Visualise pane.

Editing fault-aware management protocols. The
Edit pane (Fig. 16.(b)) provides all functionalities needed
to edit the fault-aware management protocol of each node
in the application topology.

The Management protocol editor permits selecting the
(type of) node to be edited through a dedicated drop-
down menu. Once a node type is selected, its fault-aware
management protocol is displayed and can be modified by
exploiting the toolbars right below it. The initial state can
be selected through a dedicated drop-down menu. States
can be edited by clicking on the Edit button, which opens
a popup window that permits editing, for each state s,
the requirement it assumes and the capabilities it pro-
vides (i.e., the values of ρ(s) and χ(s)). Transitions can be
added and removed from τ by clicking on the Add and Re-
move buttons, respectively. Similarly, fault-handling tran-
sitions can be added and removed from ϕ by clicking on the
dedicated buttons. Finally, it is possible to automatically
complete the displayed protocol: By clicking on the Fault
button, all unhandled faults are default handled according
to Def. 5. By clicking on Crashes, instead, the protocol
is updated by adding the crash operation  transitions
and all corresponding transitions (to permit analysing the
management of the corresponding nodes, also if they are
behaving unexpectedly — see Def. 13).

Barrel automatically checks whether the fault-aware
management protocols of an application are well-formed,
deterministic and race-free. If a protocol does not satisfy
either of these properties (e.g., because of an update), an
ad-hoc message is displayed right above it when it is se-
lected within the management protocol editor9.

The updates applied to the fault-aware management
protocol of the currently selected node type can also be
viewed in the XML source of such node type, by clicking

9A complete list of all reasons why one or more fault-aware man-
agement protocols in an application are not well-formed, determin-
istic or race-free is available in the Analyse pane.
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(a)

(b)

Figure 16: (a) Visualise and (b) Edit panes of Barrel.
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on the Show XML button appearing in the top-right cor-
ner of the Edit pane. Once the fault-aware management
protocols of the node types have been edited, the updated
CSAR can be downloaded through the CSAR Export func-
tionality (in the navigation bar).

Analysing the management of applications. The
Analyse pane (Fig. 17) permits interactively analysing the
fault-aware management behaviour of the imported com-
posite application. The Analyse pane contains two sepa-
rate tools, namely a Simulator for interactively simulating
the behaviour of the composite application, and a Plan-
ner for automatically determining (valid) plans reaching
desired application configurations. Both simulation and
planning can be carried out with hard recovery enabled or
disabled (by setting the corresponding toggling option in
the Options section).

The Simulator permits simulating sequences of operations
and determining their effects on the whole application.
More precisely, the Simulator’s table lists all the nodes
in the application topology, each associated with its cur-
rent state, the requirements it currently relies on, the ca-
pabilities it offers, and the operations actually available.
Each operation is rendered as a green button if all the ca-
pabilities connected to requirements needed to execute it
are currently available, otherwise it is rendered as a yellow
disabled button. By clicking on available operations, users
can simulate their execution, and subsequently update the
global state displayed by the simulator table.

• The update may violate some requirements (hence
generating some faults), which are then displayed as
red buttons. If the fault of a requirement can be han-
dled, the corresponding button is clickable, otherwise
it is disabled. By clicking on the button correspond-
ing to a requirement, users can simulate the handling
of such requirement, hence updating the global state
displayed by the Simulator.

• An update can also result in permitting to hard re-
cover a node that is stuck in its Crashed state. If this
is the case, a red button Hard recover appears next to
the current state of such node, and by clicking on such
button the global state of the application is updated
by resetting the node to its initial state.

The Simulator can be reset at any time, by simply clicking
on the button Reset simulator.

With the Simulator, users can already perform most of
the analyses described in Sect. 4. For instance, to check
whether an existing plan is valid (see Def. 9), they just
need to simulate its sequential traces and check that such
traces can be executed in their entirety. To check whether
an existing plan is fault-free (see Def. 10), they just need
to check that no fault is generated by simulating any of its
sequential traces. They can also compute the effects of an
existing plan on states, capabilities and requirements by
looking at the initial and final configurations displayed by
the Simulator table.

The Planner instead automatically determines new se-
quential plans that permit reaching the Target global state
from the Starting global state. Both global states can be set
by associating each node with one of its states through a
dedicated drop-down menu. The management plan reach-
ing the target global state from the starting global state
is displayed at the bottom of the planner. Notice that,
whenever one of the two global states is changed, the plan
is immediately recomputed.

6. Barrel at work

6.1. Case study

We hereby illustrate how we fruitfully exploited Barrel
to analyse, validate and plan (at design-time) the manage-
ment of a concrete application10.

The Thinking application. Thinking is an open-
source11 web application that allows end-users to share
what they are thinking about, so that all other end-users
can read it.

Thinking is composed by three main components: (i) an
instance of MongoDB that is exploited to permanently
store the collection of thoughts shared by end-users,
(ii) ThoughtsApi, which is a Dropwizard-based REST API
that permits accessing the collection of shared thoughts,
and (iii) ThoughtsGui, which is a web-based graphical user
interface that interacts with ThoughtsApi to permit re-
trieving and adding thoughts to the shared collection. The
MongoDB instance is obtained by instantiating a Mongo
Docker container, while ThoughtsApi and ThoughtsGui are
made concrete by hosting them on a Maven Docker con-
tainer and on a Node Docker container, respectively. The
resulting application topology is depicted in Fig. 18.

We hereafter illustrate the fault-aware management pro-
tocols of the nodes in the application topology of Thinking.
All such protocols permit analysing the effects of a mis-
behaving node on the rest of the application (i.e., they
include crash transitions  — see Def. 13).

• Mongo is a DockerMongo node. It offers a capabil-
ity MongoEndpoint (that is used to satisfy the corre-
sponding requirement of ThoughtsApi) and the man-
agement operations to Run, Start, Stop, and Delete
the corresponding container12.

The fault-aware management protocol of Mongo is
shown in Fig. 19. Its initial state is Unavailable, where
Mongo is not providing any capability, and where it

10The case study has been run on an Ubuntu 16.04 LTS virtual
machine, with 32 GB of storage and 8 GB of memory.

11The source code of Thinking is publicly available in a GitHub
repository (https://github.com/di-unipi-socc/thinking).

12The implementation of Mongo’s management operations is
as follows. Run is implemented by the command line instruc-
tion “docker run -name mongo -p 27017:27017 -d mongo”, Start
by “docker start mongo”, Stop by “docker stop mongo”, and
Delete by “docker rm mongo”.
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Figure 17: Analyse pane of Barrel.
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Figure 18: Topology of the Thinking application, represented accord-
ing to the TOSCA graphical notation [9].

Figure 19: Fault-aware management protocol for nodes of type
DockerMongo (such as Mongo in Fig. 18).

can perform the operation Run to become Running.
In the Running state, Mongo continues to provide its
capability MongoEndpoint (hence satisfying the re-
quirements connected to it). It also permits executing
the operation Stop, which makes Mongo transit to the
state Stopped, where it stops providing the capability
MongoEndpoint. From the Stopped state, Mongo can
return to be Running or Unavailable, respectively by
executing Start or Delete.

• Node and Maven are Docker nodes, and their struc-
ture is similar to that of Mongo. They indeed offer
a capability to satisfy other nodes’ requirements, and
the operations to Run, Start, Stop, and Delete them.
Their fault-aware management protocol is also very
similar to that of Mongo (with the only difference that
Node and Maven continue to provide their capability
Container in their state Running, while Mongo is of-
fering the capability MongoEndpoint).

• ThoughtsApi is a Dropwizard application implement-
ing a REST API to be exposed on a given port.
ThoughtsApi hence offers a capability APIEndpoint
(that is used to satisfy the corresponding requirement
of ThoughtsGui), and the set of management opera-

Figure 20: Fault-aware management protocol for nodes of type
Docker (such as Node and Maven in Fig. 18).

Figure 21: Fault-aware management protocol for nodes of type Drop-
wizard (such as ThoughtsApi in Fig. 18).

tions implementing its lifecycle13. ThoughtsApi also
requires a MavenContainer to be installed into, and a
MongoEndpoint to connect to.

The fault-aware management protocol of Thoughts-
Api is illustrated in Fig. 21. Its states are Unin-
stalled (initial), Installed, Configured, Working, and
Dropwizard . Uninstalled is the only state that is not
associated with any requirement or capability, while
all other states specify the requirements that must
continue to be satisfied in order for ThoughtsApi to
continue to work properly. All states (but Unin-
stalled) also specify the capabilities that they con-
tinue to provide. All transitions bind their executabil-
ity to the availability of the capability satisfying the
requirement MavenContainer. Configure, Run, and
Stop bind their executability also to the availability of
the capability satisfying the requirement MongoEnd-
point. Finally, it is worth noting that all faults are
default handled by a transition targeting the “sink”
state Dropwizard (Def. 5).

13The bash scripts implementing the operations to Setup, Run,
Configure, Stop, and Uninstall of ThoughtsApi are publicly available
on GitHub at https://github.com/di-unipi-socc/thinking/tree/
master/api/scripts.
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App (such as ThoughtsGui in Fig. 18).

• ThoughtsGui is a WebApp node, which offers the op-
erations to manage its lifecycle14. To effectively run,
ThoughtsGui also require a container to be installed
into, and the endpoint of the instance of ThoughtsApi
to connect to (through its requirements NodeJSCon-
tainer and APIEndpoint, respectively).

The fault-aware management protocol of Thoughts-
Gui is illustrated in Fig. 22. Its states are Unin-
stalled (initial), Installed, Configured, Running, Work-
ing, and WebApp . Uninstalled is the only state that
is not associated with any requirement or capability,
while all other states specify that the capabilities cor-
responding to the indicated requirements must con-
tinue to be provided in order for ThoughtsGui to con-
tinue to work properly. All transitions bind their ex-
ecutability to the availability of the capability satis-
fying the requirement NodeJSContainer. The tran-
sitions targeting the states Configured and Working
also require the requirement APIEndpoint to be actu-
ally satisfied. Finally, it is worth noting that all faults
are default handled by a fault-handling transition tar-
geting the “sink” state WebApp (Def. 5).

To permit analysing the management behaviour of
Thinking, we modelled its application topology in TO-
SCA with Winery [9]. We then exploited Barrel to edit
the fault-aware management protocols of the nodes in the
application topology of Thinking15 (by leveraging of the

14The bash scripts implementing the operations to Setup, Run,
Configure, Stop, and Uninstall of ThoughtsGui are publicly available
on GitHub at https://github.com/di-unipi-socc/thinking/tree/
master/gui/scripts.

15The resulting CSAR is publicly available on GitHub at https://
github.com/di-unipi-socc/barrel/blob/master/examples. It can
be used to repeat the analyses discussed in the following sections.

functionalities of Barrel to default handle faults, and to
model the unexpected behaviour of components).

Analysing the deployment of Thinking. Our first
aim was to develop a management plan for deploying an
instance of Thinking. By exploiting the documentation of
Thinking available online as a reference, we came up with
the plan depicted in Fig. 23.

Figure 23: A deployment plan for Thinking.

We employed Barrel to check whether the plan we de-
veloped was valid, by simulating all its possible sequential
traces with the Simulator available in Barrel. We actu-
ally discovered that none of them is valid, because each
sequential trace tries to execute a management operation
in a global state where the requirements needed to execute
such operation are not satisfied. Each sequential trace in-
deed either tries to Configure ThoughtsApi to connect to
the endpoint offered by Mongo before Mongo is actually
offering its endpoint (viz., before Mongo is Running), or it
tries to Configure ThoughtsGui to connect to the endpoint
of ThoughtsApi before such endpoint is actually available
(viz., before ThoughtsApi is Working).

We hence refined our deployment plan to avoid both
aforementioned issues. Namely, to ensure that the Confi-
gure operation of ThoughtsApi is invoked when Mongo is
Running, we moved it right after the initial parallel flow.
To ensure that the the Configure operation of Thoughts-
Gui is invoked when ThoughtsApi is Working, we moved
it right after the Start of ThoughtsApi. The resulting plan
is shown in Fig. 24.

Figure 24: A valid deployment plan for Thinking.

We then simulated the sequential traces of the refined
plan with Barrel, which all turned out to be valid. This
in turn means that the deployment plan in Fig. 24 is valid.
The latter effectively models reality, as by manually exe-
cuting each of its sequential traces (viz., by concretely run-
ning the Docker commands and bash scripts implement-
ing the management operations forming such traces), we
always ended up with a “fresh” instance of the Thinking
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Planning the undeployment of Thinking. We then
considered the problem of undeploying a running instance
of Thinking. Namely, we focused on the development of a
management plan that, if executed when all components
of Thinking are up and running, allows to go back to the
initial global state where all components of Thinking are
not installed.

We employed the Planner available in Barrel to auto-
matically determine the desired undeployment plan. We
first set the starting global state as that where Node,
Maven and Mongo are Running, and where ThoughtsApi
and ThoughtsGui are Working. As the target global state
is by default set to that where all components are not
installed, the Planner immediately displayed a valid se-
quence of operations allowing to move from the starting
global state to the target global state. Such sequence is
displayed in Fig. 25.

Figure 25: A management plan that permits undeploying a running
instance of the Thinking application. This plan was automatically
determined by the Planner of Barrel.

To check whether such plan was effectively undeploying
Thinking, we launched an instance of Thinking by execut-
ing the deployment plan in Fig. 24. We then manually
executed the sequence of operations displayed in Fig. 25,
and this effectively resulted in going back to the initial
situation where the containers Node, Maven, and Mongo
were not present on the host17.

Analysing the effects of a misbehaving component.
We also analysed the worst-possible effects of an unex-
pected crash of the ThoughtsApi component on a running
instance of Thinking.

We first set the Simulator of Barrel to start from the
global state where Node, Maven and Mongo are Running,
and where ThoughtsApi and ThoughtsGui are Working.
We then injected the crash of ThoughtsApi by simulat-
ing the execution of its Crash operation, which resulted
in making ThoughtsApi become Crashed18. This also pro-
duced a fault in ThoughtsGui, as the latter was assuming
the APIEndpoint offered by ThoughtsApi to continue to be
provided. We also simulated the handling of such failure,
which brought the application to the global state where
Node, Maven, and Mongo are Running, where Thoughts-
Api is Crashed, and where ThoughtsGui is Running (but
not connected to any instance of ThoughtsApi).

16.
17This was actually confirmed by their absence from the output of

the command line instruction docker ps -a (which lists all Docker
containers available on a host).

18Barrel denotes the  operation and the sink state of a node
with the names Crash and Crashed, respectively.

Notice that the reached global state effectively models
reality. To check this, we indeed started an instance of
Thinking (by executing the deployment plan in Fig. 24)
and we forced ThoughtsApi to “crash” (by actually killing
the corresponding process in the Maven container). After
such crash, both ThoughtsGui and Mongo were still run-
ning, but ThoughtsGui was not capable to effectively serve
its clients because it could not connect to ThoughtsApi.
Indeed, whenever we tried to connect to ThoughtsGui, no
thought was displayed in it (since the GET request sent
to ThoughtsApi did not receive any answer).

Planning the (hard) recovery of Thinking. We fi-
nally considered the problem of developing a recovery plan
for an instance of Thinking whose ThoughtsApi compo-
nent unexpectedly crashed. After enabling hard recovery
in Barrel, we exploited its Planner to automatically de-
termine such recovery plan. We first set the starting global
state as that where Node, Maven and Mongo are Running,
where ThoughtsApi is Crashed and where ThoughtsGui is
Running. We then set the target global state as that where
Node, Maven and Mongo are Running, and where Though-
tsApi and ThoughtsGui are Working. The Planner imme-
diately displayed a valid sequence of management oper-
ations allowing to reach the target global state from the
starting one. Such a sequence of operations is depicted in
Fig. 26.

Figure 26: A (hard) recovery plan for a running instance of the
Thinking application, whose ThoughtsApi component unexpectedly
crashed. This plan was automatically determined by the Planner of
Barrel.

We then went back to our crashed instance of Think-
ing (obtained as discussed above), and we manually exe-
cuted the sequence of management operations in Fig. 26.
This resulted in effectively recovering such an instance of
Thinking, whose ThoughtsGui was again connected to an
instance of ThoughtsApi (hence allowing to visualise stored
thoughts and to insert new thoughts).

6.2. Controlled experiment

In this section we report on a small controlled experiment
whose aim was to provide a quantitative evalaution of how
much our approach can be of help in analysing and plan-
ning the management of a composite application.

The experiment was based on four main tasks19, each
requiring to analyse/plan a different phase of the manage-
ment of the Thinking application (Sect. 6.1):

• Task T1 required to check the validity of a set of ex-
isting deployment plans. It was composed by four

19A copy of the test (and of its solutions) is publicly available at
https://github.com/di-unipi-socc/barrel/blob/master/test.
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sub-tasks (T1.1, T1.2, T1.3 and T1.4), each concerning
a different sequence of management operations for de-
ploying instances of Thinking, and each requiring to
be validated.

• Task T2 focused on analysing the effects of a set of ex-
isting plans for managing a running instance of Think-
ing. It was composed by three sub-tasks (T2.1, T2.2
and T2.3), each concerning a different management
plan.

• Task T3 concerned a running instance of Thinking and
it was composed by the following two sub-tasks. T3.1
required to understand how the state of a running
instance of Thinking changes if we stop its compo-
nent Mongo. T3.2 required to indicate whether/how
all components of an instance of Thinking can return
to be up and running from the state reached in T3.1.

• Task T4 required to indicate whether/how the deploy-
ment of an instance of Thinking can be completed
even if the ThoughtsAPI unexpectedly fails and be-
comes unresponsive to any of its management opera-
tions.

We submitted the above tasks to 24 volunteers, who
were partitioned in two groups. The first group was com-
posed by 2 post-doc researchers, 4 participants holding a
MSc in computer science and 6 participants holding BSc
in computer science. The second group was composed by 1
post-doc researcher, 4 participants holding a MSc in com-
puter science and 7 participants holding BSc in computer
science. Both groups were provided with the documen-
tation and source code of Thinking available online. The
first group was also provided with a TOSCA representa-
tion of Thinking (including the fault-aware management
protocols of its components), which they were allowed to
use in Barrel to analyse and plan the management of the
Thinking application.

The goal of the experiment was to compare the time
needed and the success rate of both groups to solve the
above listed management tasks.

• The average time needed by the group exploiting
Barrel to complete all tasks was 25 minutes (with a
standard deviation of 6 minutes), while for the group
not using Barrel it was 32 minutes (with a stan-
dard deviation of 8 minutes). We can hence observe
that the group using Barrel was faster in complet-
ing the analysis and planning of the management of
the Thinking application (25 minutes vs. 32 minutes),
and that the time performance achieved by the single
participants in the first group were also more uniform
(due to a lower standard deviation).

• The success rate of both groups is displayed in Fig. 27.
The average success rate of the group using Bar-
rel was 89.2% (with a standard deviation of 6.7%),
against the 30.8% (with a standard deviation of
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Figure 27: Histogram chart displaying the results of our controlled
experiment. For each task (on the x-axis), two histograms display
the average success rate (on the y-axis) obtained by both groups
involved in our experiment (viz., the group exploiting Barrel as an
additional design-time support, and the group not using it).

13.8%) achieved by the other group. It is also worth
noting that the highest differences in success rates
have been registered in the tasks requiring to under-
stand whether a plan was valid or not (viz., tasks T1.1,
T1.2, T1.3, T1.4 and T2.2), as well as in those requir-
ing to understand the effects of failures and to recover
from them (viz., tasks T3.1, T3.2 and T4).

The small experiment (24 participants at work, on a
5-component application) that we conducted clearly indi-
cates that the group using Barrel completed the tasks in
less time and with a considerably higher success rate then
the other group. This suggests that our approach can con-
cretely help in designing the management of composite ap-
plications, especially if we think about enterprise applica-
tions, which typically integrate dozens (or even hundreds)
of application components [3].

7. Related work

How to automate the management of applications is a
well-known problem in computer science. In the cloud
era, it has become even more prominent because of the
complexity of both applications and platforms [2]. This is
witnessed by the proliferation of so-called “configuration
management systems”, like Chef (https://www.chef.io)
or Puppet (https://puppet.com). These management
systems provide domain-specific languages to model the
desired configuration for a software solution, and employ
a client-server model to ensure that such configuration is
met. However, the lack of a machine-readable representa-
tion of how to effectively manage cloud application com-
ponents inhibits the possibility of performing automated
analyses on components configurations and dependencies.

A first attempt to model the deployment of cloud-based
applications was the Aeolus component model [15]. The
Aeolus model shares our baseline idea of describing man-
agement behaviour of application components through
finite-state machines, whose states are associated with con-
ditions describing what is offered and required in a state.
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Such descriptions can then be composed to model the
management behaviour of a composite application. Ae-
olus however differs from our approach since it focuses on
automating the deployment and configuration of compos-
ite cloud applications. Fault-aware management protocols
instead focus on allowing to model and analyse the whole
management of an application, including the recovery a
desired application configuration after one or more of its
components were faulted.

Another approach worth mentioning is Engage [16].
Given a partial installation specification, Engage is capa-
ble of automatically determining a full installation plan,
which permits coordinating the deployment and configura-
tion of an application across multiple machines. However,
similarly to Aeolus [15], Engage differs from our approach
since it focuses on the deployment of applications. We in-
stead focus on the whole application management, by also
allowing to explicitly model faults, to inject failures in ap-
plication components, analysing their effects, and reacting
to them to restore a desired application state.

The problem of rigorously engineering fault-tolerance in
complex systems has been widely studied in computer sci-
ence [17], and there exist various approaches allowing to
design and analyse such a kind of systems. Two concrete
examples are the approaches proposed by Qiang et al. [18]
and Betin Can et al. [19], which provide facilities for fault-
localisation in complex applications, hence allowing to re-
design such applications by avoiding the occurrence of the
identified faults. Another example is given by Johnsen
et al. [20], which propose a solution for designing object-
oriented applications by first considering fault-free appli-
cations, and by then iteratively refining their design by
identifying and handling the faults that may occur. The
main difference between the aforementioned approaches
and ours is that objective of those approaches is to ob-
tain applications that “never fail”, because their potential
faults have already been identified and properly handled.
Our approach is instead more recovery-oriented [21], as we
consider applications where faults can possibly occur, and
we permit designing applications that can be recovered.

A similar argument applies to the approaches proposed
by Grunske et al. [22], Kaiser et al. [23], and Alhosban
et al. [24]. These approaches can however be considered
somehow closer to ours. They indeed share with our ap-
proach the basic idea of first indicating which faults can
affect components and how the latter react to them, and
then composing the obtained models according to the de-
pendencies occurring among the components of an appli-
cation (viz., according to its topology).

Friedrich et al. [25] proposes an approach to handle
faults in service-based processes which is very close in
the spirit to ours. As we do for composite applications,
service-based processes are described with a model-based
approach, and the description of a process includes the
possible repair actions for each of its activities. This per-
mits checking recoverability of actions at design time, and

generating recovery plans whenever a fault is detected to
have happened (by an external monitoring tool). Friedrich
et al. [25] however differ from our approach mainly because
of the application domain, which permits them to exploit
different techniques (such as heuristics based on branch-
ing probabilities) to carry out their analyses, and since
they assume faults to happen one at a time. Friedrich et
al. [25] differ from our approach also because they do not
cope with services whose actual behaviour is different from
that modelled in the process.

Boyer et al. [26] propose an approach to reconfigure
component assemblies that is resilient to failures. Their
approach is capable of automatically determining a recon-
figuration plan that brings a component assembly from its
actual configuration to a target configuration, by execut-
ing a sequence of reconfiguration operations. Their ap-
proach also deals with unexpected failures of components
while the reconfiguration plan is being executed, by under-
standing which components are affected by a failure, and
by re-computing a new reconfiguration plan still bringing
the system to its target configuration (which, in the worst
case, may require to roll-back a component assembly to
its initial configuration, and to re-compute a different re-
configuration plan). The approach by Boyer et al. [26]
however differs from our approach, as it assumes the set
of reconfiguration operations and the behaviour of compo-
nents to be fixed. We instead permit fully customising the
set of operations to manage a component, as well as its
(fault-aware) management behaviour.

Durán and Salaün [27] present a decentralised solution
for the deployment and reconfiguration of composite cloud
applications in presence of failures. In their solution, com-
posite applications are modelled as sets of interconnected
virtual machines. Each virtual machine is provided with a
configurator module, which manages its lifecycle. A man-
ager is then in charge of orchestrating deployment and
reconfiguration of composite applications, by interacting
with the configurators of the virtual machines of its compo-
nents. The solution proposed by Durán and Salaün [27] is
related to our approach as it aims at managing composite
applications by taking into account failures and by specify-
ing the management of each component separately. It how-
ever differs from our approach since, despite it allows to
model the dependencies occurring among application com-
ponents, it is not possible to distinguish between “vertical”
dependencies (i.e., indicating that a component is hosted
on another) and “horizontal” dependencies (i.e., indicat-
ing that a component just requires another to be up and
running). Additionally, the solution proposed by Durán
and Salaün [27] only considers environmental faults, while
we also deal with application-specific faults. Similar con-
siderations apply to the approach proposed by Etchevers
et al. [28]

Liggesmeyer and Rothfelder [29] propose an approach
for identifying faults in composite systems, by relying on a
finite state machine-based representation of the behaviour
of system components. Despite the analyses carried out
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by Liggesmeyer and Rothfelder are different from ours,
they rely on a modelling quite close to ours. They indeed
rely on a sort of requirements and capabilities to model
the interaction among components, and they also allow to
“implicitly” indicate how such components react to pos-
sible faults. Our modelling strictly generalises that pro-
posed by Liggesmeyer and Rothfelder [29] because of the
following reasons. Firstly, in our modelling the state of a
component can be modified not only because of a require-
ment that is no more satisfied, but also because of the
actual execution of a management operation. Secondly,
our modelling allows to “explicitly” indicate how a node
reacts to the occurrence of single/multiple faults (as fault
handling transitions are distinct from those modelling the
normal behaviour of a component). Similar considerations
apply to the modelling proposed by Chen et al. [30], which
is also based on finite state machines, and which also in-
cludes a sort of requirements and capabilities to model the
interaction among components.

Hajisheykhi et al. [31] propose UFIT, a tool that permits
analysing the fault-tolerance of systems. On the one hand,
UFIT is similar to our approach as it allows to specify the
behaviour of a system with a (timed) finite-state machine,
which includes transitions explicitly modelling how a sys-
tem reacts to the occurrence of faults. On the other hand,
UFIT differs from our approach since it focuses on mono-
lithic systems, hence not providing any natural way to
combine the finite state machines modelling the behaviour
of multiple interacting systems.

Two other approaches worth mentioning are those pro-
posed by de Lemos and Fiadeiro [32], and by Nagatou
and Watanabe [33]. The approach by de Lemos and Fi-
adeiro [32] indeed inspired the way in which we rely on
the interdependencies among components to model fault-
awareness, as well as the idea of recovering applications
from faults by applying sequences of atomic operations
(until we reach a desired application configuration). Naga-
tou and Watanabe [33] instead inspired our idea of inject-
ing faults in applications to compute the effects of misbe-
having components (hence allowing to recover applications
from unpredictable faults).

To the best of our knowledge, ours is the first the ap-
proach that allows to automate the orchestration of the
management of composite cloud applications, which con-
siders that faults can (and probably will) occur during the
management of such a kind of applications, hence allowing
to explicitly indicate how each component of an applica-
tion will react to their occurrence. It does so by allowing
to customise the management behaviour of each compo-
nent, and by automatically deriving the behaviour of a
composite application by combining the behaviour of its
components (according to the application topology).

Finally, it is worth noting that we investigated the pos-
sibility of employing composition-oriented automata (like
interface automata [34]) to model the valid management
of a composite application as the language accepted by

the automaton obtained by composing the automata mod-
elling the management protocols of its components. The
main drawbacks of such an approach are the size of the
obtained automaton (which in general grows exponentially
with the number of application components), and the need
of recomputing the automaton whenever the management
protocol of a component is modified or whenever a new
component is added to an application.

8. Conclusions

Automating the management of composite applications is
currently one of the major concerns of enterprise IT [35].
Composite applications typically integrate various hetero-
geneous components, whose deployment, configuration,
enactment, and termination must be suitably coordinated,
by also taking into account all dependencies occurring
among application components. As the amount of com-
ponents grows, or the need to reconfigure them becomes
more frequent, application management becomes more and
more time-consuming and error-prone [1].

In this paper, we have proposed fault-aware manage-
ment protocols, which permit compositionally modelling
the management of composite cloud applications, by also
taking into account the possibility of faults suddenly oc-
curring, as well as of misbehaving components. We have
shown that, given the specification of the topology of an
application and of the fault-aware management protocols
of its components, we can automatically derive the man-
agement behaviour of the whole application. We have also
shown how such behaviour permits automating various
useful analyses, like checking whether a (existing) work-
flow orchestrating the management of an application is
valid, which are its effects, whether it generates faults, or
determining plans for changing the actual configuration of
an application (which is particularly useful to recover an
application that is stuck because of a faulted/misbehaving
node).

We also illustrated how we fruitfully integrated fault-
aware management protocols in the OASIS standard TO-
SCA [7], by means of the Barrel prototype. Barrel can
be exploited to validate and automate the (fault-aware)
management of existing TOSCA applications, as we illus-
trated in Sect. 6. It is worth observing that, even if some of
the analyses we presented in Sect. 4 have exponential time
complexity in the worst case, they still constitute a sig-
nificant improvement with respect to the state-of-the-art,
as currently the management of the components forming a
complex application is coordinated manually (e.g., by de-
veloping ad-hoc scripts), and it is hardly reusable since it
is tightly coupled to such application.

The presented approach can be exploited for developing
engines capable of automatically orchestrating the man-
agement of composite applications in a fault-resilient man-
ner. Indeed, given a desired application configuration, an
orchestrator can automatically execute the sequence of op-
erations needed to reach such configuration, and it can

24



Pr
ep
rin
t

maintain such configuration even if faults suddenly occur
(or if components behave unexpectedly). The development
of such orchestrator, as well as its exploitation to further
validate our approach, is in the scope of our future work.

More generally, we plan to extend the analyses that can
be performed on fault-aware management protocols. For
instance, we plan to devise techniques permitting to im-
prove our analyses by determining fragments of the topol-
ogy of a composite application that can be managed inde-
pendently from the rest of the topology.

Finally, it is worth noting that fault-aware management
protocols currently do not take into account costs nor QoS,
which are however important factors for cloud applica-
tions [36]. We plan to extend fault-aware management
protocols to account also for costs and QoS, and to devise
analysis techniques to determine the cost and QoS needed
to manage a composite application (e.g., allowing to de-
termine the “best” management/recovery plan that permit
changing/restoring the configuration of an application).
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