
Pr
ep
rin
t

The Pains and Gains of Microservices: A Systematic Grey Literature Review

Jacopo Soldania,∗, Damian Andrew Tamburrib, Willem-Jan Van Den Heuvelb

aDipartimento di Informatica, Universitá di Pisa, Pisa, Italy
bJheronimus Academy of Data Science, TU/e, Universiteit van Tilburg, NL

Abstract

The design, development, and operation of microservices are picking up more and more momentum in the IT industry.
At the same time, academic work on the topic is at an early stage, and still on the way to distilling the actual “Pains &
Gains” of microservices as an architectural style. Having witnessed this gap, we set forth to systematically analyze the
industrial grey literature on microservices, to identify the technical/operational pains and gains of the microservice-based
architectural style. We conclude by discussing research directions stemming out from our analysis.

Keywords: microservices, microservices design, microservices development, microservices operation, systematic grey
literature review, systematic literature review

1. Introduction

Microservices are gaining more and more momentum in
enterprise IT [24]. Prominent examples are Amazon, Net-
flix, Spotify and Twitter, which are already delivering their
core business through microservice-based solutions.

Microservices were first introduced in 2014 by Lewis and
Fowler in their famous blog post [S22]. They define an ar-
chitectural style for developing applications as suites of
small and independent (micro)services. Each microservice
is built around a business capability, it runs in its own
process, and it communicates with the other microser-
vices in an application through lightweight mechanisms
(e.g., HTTP APIs). To some extent, the microservice ar-
chitectural style can be seen as a natural extension of SOA
(Service-Oriented Architecture), which puts emphasis on
the independent/self management of services, and on their
lightweight nature [27]. Microservices are loosely coupled
architectural elements that can be independently deployed
by fully automated machinery. Such independent deploy-
ment is often achieved by exploiting lightweight, container-
based platforms [17]. As such, microservices offer by de-
sign a scalable solution for service-oriented operation [7].

There exist secondary studies analyzing research trends
on microservices in the academia, all concluding that aca-
demic research on microservices is still in its early stage.
At the same time, companies are working day-by-day on
the design, development and operation of microservices,
as also witnessed by the huge amount of grey literature
on the topic. We can hence observe a sort of gap between
academic research and industry practices, especially in an

∗Corresponding author. Mail: Dipartimento di Informatica,
Universitá di Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italia.
Email: soldani@di.unipi.it.

effort to figure out which are the technical/operational
“pains” and “gains” of microservices.

In this paper, we try to fill the above mentioned gap by
complementing the academic state-of-the-art on microser-
vices with a systematic analysis of the industrial grey liter-
ature on the topic (as recommended by Garousi et al. [8]).
More precisely, we aim at identifying, taxonomically classi-
fying, and systematically comparing the existing grey lit-
erature on pains and gains of microservices, from their
design to their development. We conducted a systematic
review of 51 selected industrial studies, published since
2014 (when the microservice-based architectural style was
first defined by Lewis and Fowler) till the very end of 2017.
Following the guidelines by Garousi et al [9] (and those by
Petersen et al. [19]), we first excerpted two taxonomies
from the selected industrial studies, one for the pains of
microservices, and one for their gains. We then exploited
such taxonomies to classify and compare the selected in-
dustrial studies, in order to distill the actual recognition
of pains and gains of microservices by the IT industry.

The results of our study show that the pains of mi-
croservices are mainly due to the intrinsic complexity
of microservice-based applications. For instance, while
designing a microservice-based application, the primary
pains are determining the “right” granularity of its mi-
croservices and the design of its security policies. Manag-
ing distributed storage and application testing are instead
the primary pains at development time. At operation time,
the primary pain of microservices is their consumption of
network and computing resources, which is recognized as
much higher with respect to that of other architectural
styles (e.g., monoliths, SOA).

At the same time, microservices bring various, widely
recognized gains. At design time, the primary gains of
microservices those related to the exploitation of design

Preprint submitted to Elsevier September 27, 2018

Published article: Soldani J, Tamburri DA, Van Den Heuvel WJ. "The pains and gains of microservices: A 
Systematic grey literature review", Journal of Systems and Software, Volume 146, 2018, Pages 215-232. 
DOI: 10.1016/j.jss.2018.09.082.



Pr
ep
rin
t

patterns, which are widely recognized to help mitigat-
ing/solving some pains of microservices. Development
emerges by far as the stage gaining most from microser-
vices, as different microservices can be independently de-
veloped by different developers, who have all the freedom
in choosing the technology stacks and data stores that best
fit the microservices they are developing. Operation is also
gaining from microservices, which can be independently
deployed and scaled whenever needed.

Our systematic analysis of grey literature on microser-
vices can provide benefits to both researchers and practi-
tioners. A systematic presentation of the industrial state-
of-practice on microservices provides a body of knowledge
to develop new theories and solutions, to analyze and ex-
periment research implications, and to establish future re-
search dimensions. At the same time, it can help practi-
tioners to understand the currently recognized pains and
gains of microservices, and their maturity. This can have
practical value for practitioners, e.g., as a starting point
for microservices experimentation or as a guideline for day-
by-day work with microservices.

The rest of this article is organized as follows. Sect. 2
discusses related work. Sect. 3 illustrates the methodol-
ogy, research questions and scope of our systematic study.
Sect. 4 presents the results of our study. Sect. 5 discusses
results and limitations of our study. Sect. 6 concludes this
article, by discussing findings, implications and directions
for future work.

2. Related Work

Besides the seminal paper by Sill [20], only a hand-
ful of other efforts provide empirical evidence on effec-
tive/efficient exploitation of microservices. For instance,
Balalaie et al. [1] illustrate experiences and lessons learned
from the migration and architectural refactoring of a com-
mercial application to microservices. Hassan and Bah-
soon. [12] provide a first investigation on design trade-offs,
when trying to partition applications in independent mi-
croservices. Haselboch et al. [11] offer an overview of the
microservice design space, by proposing a strategic model
for instrumenting microservice design decisions. Erl et
al. [4] and Zimmermann [27] instantiate SOA notions in
the world of microservices. A key observation turning out
from above mentioned research efforts (and from closely
related efforts, as well) is that academic research on mi-
croservices — from their design to their development and
operation — is still at an early stage.

The early stage of academic research on microservices
also impacts on surveys on the state-of-the-art or state-of-
practice on microservices. State-of-the-art surveys focus
on classifying and comparing the existing research body
on microservices (including some non peer-reviewed con-
tent), in order to determine the maturity of research on
microservices, and on establishing the research challenges
emerging from the analyzed literature. Concrete examples

are the systematic analyses provided by Di Francesco et
al. [3], by Pahl and Jamshidi [18] and by Vural et al. [25].
They all conclude that academic research on microservices
is still immature, by also outlining various research direc-
tions.

State-of-practice analyses are instead yet to be pro-
vided, as (to the best of our knowledge) the only avail-
able efforts are those by Ghofrani et al. [10] and by
Taibi and Lenarduzzi [22]. Ghofrani et al. [10] provide
a preliminary analysis on state-of-practice on microser-
vices, based on an online survey (with 3 questions, an-
swered by 25 interviewed practitioners). The results pre-
sented by Ghofrani et al. [10] provide a high-level overview
of industry-oriented challenges on microservices, without
delving into the details of their actual pains and the gains.
Our study instead aims at providing a deeper analysis on
which are the technical/operational pains and gains of mi-
croservices recognized by industrial researchers and prac-
titioners working day-by-day with microservices.

Taibi and Lenarduzzi [22] illustrate 11 microservice-
specific bad practices, resulting from interviews of devel-
opers experienced with microservice-based systems. Such
bad practices are reflected by some of the pains that we
identify in our study, whose objective is however different
from that by Taibi and Lenarduzzi. Instead of trying to
identify bad practices by conducting interviews, our aim
is to elicit the main technical/operational pains and gains
of microservices by systematically analysing the grey lit-
erature on the topic.

In summary, we perceive a sort of gap between the indus-
trial understanding and state-of-practice on microservices
and the related academic literature on the topic. The key
motivation of our study is to try to fill this gap, by elicit-
ing the current state-of-practice on microservices through
a systematic grey literature review.

3. Research Design

A major intrinsic difficulty of our study is our necessary
reliance over what is called grey literature [8], intended as
materials and research produced by organizations outside
of the traditional commercial or academic publishing and
distribution channels. Common grey literature publication
types include reports (annual, research, technical, project,
etc.), working papers, government documents, white pa-
pers, videos and evaluations. On the one hand, the use
of grey literature is risky since there is often little or no
scientific factual representation of data or analyses pre-
sented in grey literature itself [6]. On the other hand, a
growing interest around using grey literature for software
engineering practitioner benefit as well as combining it to
determine the state of the art and practice around a topic
is gaining a considerable interest in many fields [6, 21],
including software engineering [8].

For the scope of this study, and in an effort to maximize
its validity, we followed a systematic approach based on

2



Pr
ep
rin
t

that by Petersen et al. [19] for conducting systematic lit-
erature reviews in software engineering. More precisely,
following the guidelines by Garousi et al. [9], we varied the
standard approach by Petersen et al. [19] as follows:

• We exploited general web search engines for searching
for grey literature (instead of indexing databases).

• We employed “saturation” as stopping criteria
(i.e., we stopped our search when no new relevant re-
sults/concepts were emerging from search results).

• We combined inclusion/exclusion criteria with quality
assessment control factors.

• We fixed the type of relevant grey literature to blog
post, whitepapers, industrial magazines and videos.

We hereafter outline the systematic approach we followed,
by starting from problem definition and by also describ-
ing the triangulation and inter-rater reliability assessment
trials we ran to enforce the validity of our findings.

3.1. Research Problem Definition and Research Questions

The problem we aim to address is twofold. On the one
hand, we aim to elicit pains, gains, best practices, and
fallacies over using microservices in practice, by looking
at the reported failure and success experiments directly
from the industrial literature. This information can have
clear practical value since other practitioners can use the
results captured in this manuscript as a starting point for
microservices experimentation in their own practice.

On the other hand, we aim to elicit the gaps, limita-
tions, and practical directions experimented up to this
point. This can help researchers investigating microser-
vices, who can start from our findings to proceed in their
research from a basis of synergy with industry itself (as
we believe that the results captured in this manuscript are
one such basis of synergy).

Stemming from the above research problems, we formu-
late the following research questions:

Q1 How much evidence of microservices experimentation
from industry is available online? We aim to provide
a high-level overview of the involvement of industrial
researchers and practitioners in microservices, by an-
alyzing how much industrial studies have been pub-
lished in the recent past (i.e., since the beginning of
2014 till the end of 2017), as well the types of contribu-
tions, the sources of publications, and their contents.

Q2 What are the technical and operational “pains” of
microservices? We aim to elicit the technical and
operational difficulties intrinsic to the design, devel-
opment and operation of microservice-based applica-
tions, which industrial researchers/practitioners have
been experimenting in the recent past.

Q3 What are the technical and operational “gains” of mi-
croservices? We aim to elicit the technical and op-
erational benefits that are provided by microservices,
which industrial researchers/practitioners have been
appreciating during the design, development and op-
eration of microservice-based applications.

3.2. Search for industrial studies

As recommended by Garousi et al. [9], industrial studies
can be identified by exploiting search strings on search
engines (e.g., Google, Bing). Following the guidelines pro-
vided by Petersen et al. [19], we identified the search string
by structuring them guided by our research questions.
More precisely, we defined the search strings based on the
PICO terms of our question [14], by exploiting only the
terms Population and Intervention. The keywords were
taken from each aspect of a research question. Differ-
ently from Petersen et al. [19], we did not restrict our
focus to specific outcomes or experimental designs in our
study, as we wished to have a broader overview of the in-
dustrial state-of-practice on microservices. By restricting
ourselves to certain types of studies, we could have ob-
tained a biased/incomplete analysis, as some sub-topics
might have been over-/under-represented for certain types
of study. The above explained difference is also reflected
by the strings we employed for searching for the pains of
microservices (Fig. 1.(a)) and for searching for the gains
of microservices (Fig. 1.(b)).

We exploited the above indicated search strings to
look for industrial studies (e.g., blog posts, whitepapers,
industry-oriented magazines, videos) that were published
since the beginning of 2014 (when microservices were first
proposed by Lewis and Fowler) until the end of 2017. The
search engines we employed are Google (primary), Bing,
Duck Duck Go, Yahoo! and Webopedia. Since engines
look for search strings over the whole pages they index,
our search resulted in a high number of irrelevant studies,
which were further refined with a secondary search and
manual screening, based on the inclusion/exclusion crite-
ria and control factors discussed in the following section.

3.3. Sample Selection & Control Factors

Table 1 outlines the inclusion and exclusion criteria
adopted in our sample selection. The inclusion criteria
(i1 − i4) were designed to focus explicitly on the kind of
practical grey literature that identifies the design, develop-
ment and operation principles currently deemed efficient
in industry based on their direct application. At the same
time, the exclusion criteria permit disqualifying studies
that do not offer the necessary design/implementation de-
tails (e1), that refer to nonfactual or unquantifiable evi-
dence (e2 and e3), and that do not discuss the limitations
and practical impact for the proposed solutions or outlined
issues (e4 and e5). An industrial study is to be selected if it
satisfies all the inclusion criteria, while it is to be excluded
if it satisfies at least one of the exclusion criteria.

3



Pr
ep
rin
t

(microservice* ∨ micro-service*) ∧ (pain* ∨ disadvantage* ∨ cons* ∨ drawback* ∨ pitfall* ∨ antipattern* ∨ code smell*)

(a)

(microservice* ∨ micro-service*) ∧ (gain* ∨ advantage* ∨ pros* ∨ benefit* ∨ ease* ∨ pattern* ∨ best practice*)

(b)

Figure 1: Strings employed for searching the technical/operational (a) pains and (b) gains of microservices. In both cases, “*” matches
lexically related terms (e.g., plurals, verb conjugations).

Inclusion i1) The study discusses the industrial applica-
tion of microservices.

i2) The study discusses the benefits or short-
comings of microservice design, development
or operation.

i3) The study reports on direct experiences,
opinions or practices on microservices by ed-
ucated practitioners.

i4) The study refers to a practical case-study
of design, development or operation of mi-
croservices.

Exclusion e1) The study does not offer details on design or
implementation of microservices.

e2) The study is not referred to industrial cases
or other factual evidence.

e3) The benefits or pitfalls of microservices are
not justified/quantified by the study.

e4) The study does not provide scope and limi-
tations of proposed solutions/patterns.

e5) The study does not offer evidence of a prac-
titioner perspective.

Table 1: Inclusion and exclusion criteria for sample selection.

In addition to the inclusion/exclusion criteria in Table 1,
to ensure the quality of the selected grey literature, we
selected only those industrial studies that were satisfying
four additional control factors:

• Practical experience → A study is to be selected only
if it is written by practitioners with 5+ experience in
service-oriented design, development and operation,
or if it refers to established microservices solutions
with 2+ years of operation.

• Industrial case-study→ A study is to be selected only
if it refers to at least 1 industrial case-study where a
quantifiable number of microservices are operated.

• Heterogeneity→ The selected studies reflect at least 5
top industrial domains and markets where microser-
vices were successfully applied.

• Implementation quantity → The selected studies re-
fer to/show implementation details for the benefits
and pitfall they discuss, so that other researchers and
practitioners can use them in action.

The control factors practical experience, industrial case-
study and implementation quantity were checked against
each single study, whereas the control factor heterogeneity
was checked against the overall set of industrial studies to
be selected1.

1The information for checking the inclusion/exclusion criteria and

At the end of our screening, 51 industrial studies were
selected based on the inclusion/exclusion criteria and on
the additional control factors. The complete list of selected
industrial studies is provided in Appendix A.

3.4. Analysis & Inter-Rater Reliability Assessment

To attain the findings discussed in Sect. 4 we adopted the-
matic coding [2]. The selected sample of articles were sub-
ject to annotation and labeling with the goal of identifying
themes emerging from the analyzed text. This process of
analysis was executed in parallel over two 50% splits of
the entire dataset, to ensure avoidance of observer bias.
The coders of the two splits (i.e., the first two authors of
this study) were then inverted and an inter-rater evalua-
tion was enacted between the two emerging lists of themes.
To evaluate inter-rater reliability, we adopted the widely
known and adopted Krippendorff α coefficient (or Kα),
which measures the agreement between two ordered lists
of codes applied as part of content analysis [15]. As part
of our evaluation, Kα was applied twice.

We first applied the evaluation coefficient to measure
the agreement between the two emerging lists of codes
by the two independent observers who individually coded
100% of the dataset in 2 rounds. The result of apply-
ing Kα to measure the agreement between these two lists
amounted to 0.76, slightly lower than the typical reference
score of 0.80 (i.e., 80% agreement). A discussion and anal-
ysis of disagreement points revealed misalignment between
the depth of the coding strategy, which was subsequently
addressed. This modification brought the agreement be-
tween the emerging lists of codes to Kα = 0.81.

Kα was then applied again to triangulate the 0.81 score
for the final list of themes with its identical counterpart,
coded by the third author of this paper, who re-coded the
entire dataset with the final coding strategy. The agree-
ment between the final list A (obtained by the first 2 au-
thors) and a final list B (obtained by the third author) was
evaluated to Kα = 0.92.

3.5. Replication Package

To encourage repeatability of our approach and verifiabil-
ity of our findings, results, and discussion points, a repli-
cation package is freely available on GitHub2. The repli-
cation package contains the intermediary artifacts and the

the control factors was excerpted from the selected industrial studies
themselves, from the authors’ LinkedIn pages, and from the web-
site/portfolio of the company where each selected industrial study
was carried out.

2https://tinyurl.com/microservices-study.

4

https://tinyurl.com/microservices-study


Pr
ep
rin
t

final results of our study. The selected industrial stud-
ies can instead be freely accessed online, by following the
bibliographic information reported in Appendix A.

4. Results

In this section we analyze the selected grey literature un-
der three different perspectives, aligned with the research
questions Q1, Q2 and Q3. We first provide a general
overview of the selected industrial studies (Sect. 4.1). We
then analyze in detail the pains and gains of microservice-
based applications emerging from the selected grey litera-
ture (Sects. 4.2 and 4.3, respectively). We finally provide
a summary of the findings of our analysis (Sect. 4.4).

4.1. Overview of the Selected Grey Literature

In order to address Q1, we hereby provide an overview
of the selected studies [S1]-[S51] based on generic aspects,
i.e., when and where they were published, in which for-
mat, and which was their content. Table 2 shows how we
classified [S1]-[S51] based on their publication year, their
source (i.e., ad-hoc blog maintained by experts, commu-
nity of practitioners, company website, industry-oriented
magazine, or industrial summit), the type of contribution
(i.e., blog post, industrial whitepaper, or video), and their
contents (description of patterns or best practices, expe-
rience report, or discussion of pros/cons of microservices).
The table also shows the companies and industrial settings
(i.e., product, case study or consulting) where the selected
industrial studies were carried out.

9

12
14

16

0

5

10

15

20

2014 2015 2016 2017

(a)

blog post
39%

video 20%

whitepaper
41%

(b)

Figure 2: Distribution of selected industrial studies (a) by year and
(b) by contribution type.

Fig. 2 illustrates the distribution of the selected stud-
ies by year and type of contribution. While the distri-
bution of selected studies by contribution type does not
provide any particular insight, their distribution by year
shows that the amount of industrial contributions on mi-
croservices is yearly increasing since 2014. This signals
that microservices are steadily gaining attention in the IT
industry since 2014, when James Lewis and Martin Fowler
gave rise to the microservice-based architectural style with
their famous blog post [S22].

Fig. 3 instead illustrates the distribution of the selected
studies by source and contents. We can observe that the

ad-hoc blog
12%

community
29%

company
39%

magazine
6%

summit 14%

(a)

best 
practices

31%

exp. report
10%

patterns
26%

pros/cons
33%

(b)

Figure 3: Distribution of selected industrial studies (a) by source
and (b) by contents.

community
25%

company
56%

magaz. 
6%

summit
13%

(a)

best 
practices

31%

exp. 
report 

6%
patterns 19%

pros/cons
44%

(b)

Figure 4: Distribution of selected industrial studies (a) by source
and (b) by contents (restricted to the studies published in 2017).

selected studies are mainly taken from community por-
tals and company websites, where practitioners and re-
searchers are mainly sharing their best practices, describ-
ing microservices-related patterns or just discussing advan-
tages and disadvantages of adopting microservice-based
solutions. The above clearly witnesses the interests of the
IT industry in microservices, in their pains and gains, and
in best practices and patterns that can be exploited to
better leverage of microservices.

The above is even more evident if we restrict the visu-
alization to the selected studies that were published last
year (Fig. 4), where companies are involved in the major-
ity of the contributions, and where the contributions are
mainly focused on the pros and cons of microservices, and
on the best practices and patterns that can be exploited
to better leverage of microservices.

Finally, Fig. 5 plots the distribution of the selected stud-
ies by industrial setting. While the distribution over the
period 2014-2017 (Fig. 5.(a)) does not provide any par-

case study
47%

consulting
43%

product
10%

(a)

case 
study

31%

consulting
56%

product
13%

(b)

Figure 5: Distribution of selected industrial studies by industrial
setting (a) over the period 2014-2017, and (b) restricted to the studies
published in 2017.

5



Pr
ep
rin
t

Study Year Contribution type Source Content Company Industrial setting
[S1] 2015 whitepaper community patterns Asurion case study
[S2] 2014 whitepaper community pros/cons C4Media consulting
[S3] 2015 blog post company pros/cons IGATE case study
[S4] 2016 whitepaper magazine exp. report Comparethemarket case study
[S5] 2017 whitepaper company pros/cons Chakray consulting
[S6] 2017 video summit pros/cons nearForm consulting
[S7] 2016 video summit exp. report SimplicityItself case study
[S8] 2015 video company pros/cons Dev2 Technologies case study
[S9] 2016 whitepaper community patterns HCL Technologies case study
[S10] 2016 blog post ad-hoc blog best practices JDriven case study
[S11] 2016 whitepaper magazine patterns Techworld consulting
[S12] 2017 video summit exp. report Netflix case study
[S13] 2015 blog post company pros/cons ThoughtWorks consulting
[S14] 2016 whitepaper community best practices Navica consulting
[S15] 2016 whitepaper community patterns DynaTrace case study
[S16] 2015 blog post ad-hoc blog pros/cons Spreadshirt case study
[S17] 2017 blog post company best practices LogicRoom case study
[S18] 2014 whitepaper community best practices Microsoft case study
[S19] 2016 whitepaper community patterns WSO2 case study
[S20] 2017 blog post community pros/cons SAP case study
[S21] 2015 blog post ad-hoc blog best practices Tyro Payments case study
[S22] 2014 blog post company patterns ThoughtWorks consulting
[S23] 2015 whitepaper community best practices Pivotal product
[S24] 2015 blog post company pros/cons MadeTech consulting
[S25] 2017 whitepaper magazine best practices Nginx product
[S26] 2015 blog post company exp. report Netflix product
[S27] 2017 whitepaper company patterns Micro consulting
[S28] 2017 video summit exp. report Speedment case study
[S29] 2015 blog post company best practices Smartbear consulting
[S30] 2015 video company pros/cons Sam Newman consulting
[S31] 2017 whitepaper community pros/cons Apiumhub consulting
[S32] 2017 blog post company patterns Valtech consulting
[S33] 2016 whitepaper community best practices Avi Networks consulting
[S34] 2015 blog post company best practices Neotys consulting
[S35] 2014 blog post ad-hoc blog patterns Eventuate case study
[S36] 2014 blog post ad-hoc blog patterns Eventuate case study
[S37] 2014 blog post ad-hoc blog patterns Eventuate case study
[S38] 2016 whitepaper company best practices Nginx product
[S39] 2014 video summit patterns Pivotal case study
[S40] 2017 blog post company pros/cons Oracle consulting
[S41] 2017 video company pros/cons ThoughtWorks consulting
[S42] 2017 video summit pros/cons ThoughtWorks consulting
[S43] 2016 whitepaper company best practices FacileLogin case study
[S44] 2014 video summit pros/cons Netflix case study
[S45] 2017 blog post company best practices Coding Sans case study
[S46] 2017 whitepaper community best practices ServisBOT consulting
[S47] 2017 whitepaper community pros/cons Nirmata consulting
[S48] 2017 whitepaper company patterns Microsoft product
[S49] 2017 whitepaper company exp. report Microsoft case study
[S50] 2014 blog post community best practices Contino consulting
[S51] 2016 blog post community pros/cons AND Digital consulting

Table 2: Classification of the selected industrial studies based on year of publication, type of contribution, source, contents, reference company
and industrial setting.

6



Pr
ep
rin
t

ticular insight, it is interesting to note that the indus-
trial studies published in 2017 mainly focused on consult-
ing. If we cross this data with the facts that microser-
vices gained momentum, and that the technology around
microservices has matured [13], we can conclude that IT
companies started focusing on increasing their consultancy
portfolio on microservices.

4.2. Microservices Pains

We hereby introduce a taxonomy for classifying the pains
of microservices. We also show how we exploited such
taxonomy to analyse current industrial perspectives on the
pains of microservices.

4.2.1. A taxonomy for pains of microservices

Table 3 illustrates a taxonomy for the pains of microser-
vices. We obtained such taxonomy by following the guide-
lines for conducting systematic reviews in software engi-
neering proposed by Petersen et al. [19]:

• We first established the stages, by aligning Q2 with
common steps of the lifecycle of software (i.e., design,
development and operation).

• We then identified the concerns by performing a first
scan of the selected studies, which was focused on Q2

to ensure the validity of the taxonomy.

• The concrete terms (i.e., the pains) were excerpted
directly from the selected studies, and they were man-
ually organized into the above mentioned sub-classes.

As we anticipated in Sect. 3, the obtained taxonomy un-
dergone various iterations among the authors of this study,
and it was submitted for validation to external experts
from two organizations located in two different countries.
This has resulted in some corrections and amendments to
the first version of the taxonomy, which resulted in the
taxonomy displayed in Table 3.

4.2.2. Pains in the selected industrial studies

Table 4 shows the classification of all selected industrial
studies based on the taxonomy for pains of microservices
introduced earlier. The table provides a first overview of
the coverage of pains over the selected studies, despite (due
to reasons of readability and space) it only captures the
classification over the concerns listed in the taxonomy of
pains3. Such coverage is also displayed in Fig. 6, from
which it is clear that the main concerns are the design of
microservice-based architectures, the distributed and het-
erogeneous storage hampering the work of developers, and
the management and monitoring of operating instances of
microservice-based applications. Security, testing and re-
source consumption are also notable concerns, while the

3The detailed classification, displaying each occurrence of each
pain, is publicly available in the replication package (see Sect. 3.5).

design development operation

architecture

security

testing

storage

microservices

resource
consumption

monitoring

management

Figure 6: Coverage of the concerns in the taxonomy for pains of
microservices. The size of each bubble is directly proportional to the
number of selected industrial studies discussing a pain pertaining to
the corresponding concern.

concrete development of each microservice is not signifi-
cantly perceived as problematic.

We hereby discuss in detail the notable concerns listed
above, stage by stage. We shall display the occurrences of
the pains of each concern in a sorted table, and we will
compare their weights4 by exploiting %-based pie charts.

Design stage. According to Fig. 6, the main concern dur-
ing the design of microservice-based applications is their
architecture. This is also witnessed by the yearly cover-
age of design-related concerns (Fig. 7). The recognition of
pains pertaining to the architecture of microservice-based
application is steadily increasing since 2014, and it keeps
higher with respect to that of security-related pains.

0

2

4

6

8

10

12

14

2014 2015 2016 2017

Architecture Security

Figure 7: Yearly evolution of the coverage of the concerns pertaining
to the design stage.

The coverage of the concrete pains due to the architec-
ture of microservice-based applications are listed in Fig. 8,
which also displays their weights in the selected industrial
studies. The figure highlights what one can obviously ex-
pect, namely that industrial researchers and practitioners

4We will measure the weight of a pain as the percentage of its
occurrences among all occurrences of all pains pertaining to its same
concern. This is analogous to what done by Pahl et al. [17] to measure
weights while classifying studies on cloud container technologies.

7



Pr
ep
rin
t

Stage Concern Pain
Design Architecture API Versioning, Communication heterogeneity, Service contracts, Service dimensioning,

Size/complexity
Security Access control, Centralised support, CI/CD, Endpoint proliferation, Human errors,

Size/complexity
Development Microservices Microservice separation, Overhead

Storage Data consistency, Distributed transactions, Heterogeneity, Query complexity
Testing Integration testing, Performance testing, Size/complexity

Operation Management Cascading failures, Operational complexity, Service coordination, Service location
Monitoring Logging, Problem location, Size/complexity
Resource consumption Compute, Network

Table 3: A taxonomy for pains of microservices.

Design Development Operation
Arc. Sec. Mic. Sto. Tes. Man. Mon. Res.

[S1] • • •
[S2] • • • •
[S3] • • • •
[S4] • • • •
[S5] • • • •
[S6] • • • •
[S7] • •
[S8] • • • • •
[S9] • • •
[S10] • •
[S11] • •
[S12] • • • •
[S13] • • • • • •
[S14] • • •
[S15] • •
[S16] • • • • • • •
[S17] • • • •
[S18] •
[S19] • • • • •
[S20] • • • •
[S21] •
[S22] • • • •
[S23] • • • •
[S24] • • • •
[S25] • • • •
[S26] • •

Design Development Operation
Arc. Sec. Mic. Sto. Tes. Man. Mon. Res.

[S27] •
[S28] • •
[S29] • • • • •
[S30] • • • • • •
[S31] •
[S32] • • •
[S33] • •
[S34] • •
[S35] • •
[S36] • •
[S37] • • • • •
[S38] • • • • •
[S39] • • • • •
[S40] • • • • •
[S41] • • • •
[S42] • • • •
[S43] •
[S44] • • • • •
[S45] • • • • • •
[S46] • •
[S47] • • •
[S48] • • • • • •
[S49] • • • •
[S50] • • • • •
[S51] • • • • •

Table 4: Classification of the selected studies based on the concerns listed in the taxonomy for pains of microservices.

API vers.
18%

comm. 
heter.

8%

serv. 
contracts

13%serv. dim. 23%

size/complexity
38% Pain #

size/complexity 27
service dimensioning 16

API versioning 13
service contracts 9

comm. heterogeneity 6

Figure 8: Weights and occurrences of the pains pertaining to the
architecture concern during the design stage.

are mostly pained by the size and complexity of the archi-
tectures obtained when designing application according to
the microservice-based architectural style.

Service dimensioning is also significantly recognized as a
pain, with 16 of the selected industrial studies recognizing
difficulties in determining how much “micro” a microser-
vice should be. All such studies agree that it is often dif-
ficult to identify the business capability/bounded context

that should be assigned to each microservice, as the bound-
aries among different capabilities/contexts are usually not
that sharp.

Another observation worth doing is about the pains due
to exploiting programmable APIs to allow microservices
to intercommunicate. The group composed by the pains
API versioning and service contracts is also significantly
covered by the selected industrial studies. Since commu-
nications among microservices is based on APIs, the API
provided by a microservice becomes a sort of contract be-
tween such microservices and those consuming its API.
Such a kind of contracts should not be violated, if we
wish to allow microservices to continue to intercommu-
nicate. This of course impacts on the versioning of the
APIs provided by microservices, hence paining the design
of microservice-based architectures.

Fig. 9 instead displays the weights and occurrences of
the pains related to securing a microservice-based appli-
cation. Other than the intrinsic complexity of securing

8



Pr
ep
rin
t

access 
control

34%

centr. 
support

8%CI/CD 4%

endp. 
prolifer.

29%

human 
errors

4%

size/complex.
21% Pain #

access control 8
endpoint proliferation 7

size/complexity 5
centralised support 2

CI/CD 1
human errors 1

Figure 9: Weights and occurrences of the pains pertaining to security
during the design stage.

microservice-based architectures (obviously due to their
size and complexity), the most recognized pains concern-
ing security are due to the access control and to the end-
point proliferation. Access control is recognized as critical
in 8 out of the selected industrial studies, all pointing out
that the microservices in an architecture should be able
to quickly and consistently ascertain the provenance and
authenticity of a request. The industrial studies also agree
that this is currently far from being easy, mainly because
of the distributed nature of microservice-based architec-
tures, and since their microservices evolve asynchronously.
The pains due to controlling accesses in microservice-based
architectures could be mitigated if designers would be pro-
vided with tools supporting a consistent, decentralized ac-
cess control. However, as highlighted by [S46] and [S23],
this is currently not the case, as existing tools provide a
centralized support for securing microservices.

Endpoint proliferation is due to partitioning of archi-
tectures in suites of independent microservices. The at-
tack surface in monoliths or service-oriented architectures
was limited to few isolated servers. Microservice-based ar-
chitectures instead require to open a lot more ports, to
expose more APIs and to distribute authentication and
access control (as already discussed above). The attack
surface is hence much more extended, and this is the main
reason why endpoint proliferation is significantly recog-
nized as a pain by industrial researchers and practitioners.

Development stage. The selected industrial studies rec-
ognize storage and testing as significant concerns while de-
veloping microservice-based applications. The same does
not hold for the development of the microservices forming
an applications (Fig. 6). Given the above, we hereby focus
on the concrete pains due to storage and testing concerns.

The yearly coverage of such pains is displayed in Fig. 10.
The recognition of both storage- and testing-related pains
overall increased from 2014 to 2017, even if with a non-
monotonic behaviour. It is worth observing that the recog-
nition of storage-related pains started decreasing in 2017,
while that of testing-related pains experienced an increase
peak in the same year. If we cross this data with the
technology waves illustrated by Jamshidi et al. [13], we
can observe that the technology for managing storage in
microservice-based application is maturing, and this re-
sulted in starting to reduce storage-related pains for de-
velopers of microservices. At the same time, the more

microservices are widespreading, the more developers are
pained by their testing [S6].

0

2

4

6

8

10

2014 2015 2016 2017

Storage Testing

Figure 10: Yearly evolution of the coverage of the concerns pertaining
to the development stage.

The pains due to storage concerns are listed in Fig. 11, to-
gether with their weights and occurrences in the selected
industrial studies. From the figure it is clear how storage-
related pains are caused by the distributed nature of stor-
age in microservice-based applications. 21 of the selected
industrial studies highlight that, by distributing the stor-
age over the various microservices forming an application,
it becomes a pain to ensure data consistency. They also
highlight how eventual consistency may help mitigating
this pain, even if it is not easy to ensure. Eventual consi-
stency may also not be a viable option in some cases, espe-
cially when consistency must be ensured on sensitive data.

data 
consist.

41%

distr. trans.
35%

heterog.
6%

query complex.
18%

Pain #
data consistency 21

distributed transactions 18
query complexity 9

heterogeneity 3

Figure 11: Weights and occurrences of the pains pertaining to storage
during the development stage.

Operating with distributed data stores is another pain
significantly recognized by industrial researchers and prac-
titioners. The intrinsic complexity in implementing trans-
actions over distributed data stores is pointed out in 18
of the selected industrial studies. 9 of them also highlight
the complexity of building queries combining data stored
in distributed and heterogeneous data stores.

Fig. 12 instead illustrates the weights and occurrences
related to the concern of testing while developing
microservice-based applications. The figure highlights how
performance testing is by far the most challenging pain
among those related to testing microservice-based applica-
tions. As discussed in [S34] and [S6], a microservice-based
application is partitioned in a huge number of indepen-
dently evolving services, and this makes it challenging to

9



Pr
ep
rin
t

integr. testing
17%

perform. 
testing

53%

size/complex.
30%

Pain #
performance testing 16

size/complexity 9
integration testing 5

Figure 12: Weights and occurrences of the pains pertaining to testing
during the development stage.

measure the performances of each of them and of the ap-
plication itself. This especially holds when testers wish to
measure user experience through the user interface of a
microservice-based application.

Operation stage. As shown by Fig. 6, all three con-
cerns of the operation stage are recognized as significant
by the selected industrial studies, with management and
monitoring being slightly more covered than resource con-
sumption. This can be observed also in Fig. 13, which
plots the yearly coverage of operation-related concerns in
the period 2014-2017. The recognition of pains related to
the management and monitoring increased in 2016 (if com-
pared with that in 2014), while it kept stable from 2016 on.
The recognition of pains related to resource consumption
followed the opposite behaviour, as it decreased from 2014
to 2016, by then experiencing an increase peak from 2016
to 2017. The latter means that resource consumption be-
came a first-class concern for the industrial researchers and
practitioners authoring the selected industrial studies, and
this may be due to the widespread and day-by-day work
with microservice-based applications and tools [13].

0

2

4

6

8

10

2014 2015 2016 2017

Management Monitoring Res. Cons.

Figure 13: Yearly evolution of the coverage of the concerns pertaining
to the operation stage.

The concrete pains due to the management of
microservice-based applications, their weights and
occurrences are displayed in Fig. 14. The figure highlights
how the intrinsic complexity of operating applications
composed by distributed and heterogeneous microser-
vices is the main challenge in the scope of managing
microservice-based applications.

The above mentioned complexity is partly explained by
the three other pains significantly discussed by the indus-
trial researchers and practitioners authoring the selected

cascading failures
14%

operat. 
complex.

54%

service 
coordin.

15%

service location
17%

Pain #
operational complexity 26

service location 8
cascading failures 7

service coordination 7

Figure 14: Weights and occurrences of the pains pertaining to man-
agement during the operation stage.

industrial studies. The partitioning of an application in
microservices can change over time, as well as the num-
ber of replicas of a microservice and their actual locations
(i.e., the hosts where they are deployed, and the ports on
which they are listening). This makes it challenging to
locate and coordinate the microservices forming an appli-
cation. Additionally, if not properly isolated, a failure in a
microservices may cause the failure of another, and so on.
Handling cascading failure is hence another factor ham-
pering the operation of microservice-based applications.

logging
29%

probl. 
location

21%

size/complex.
50%

Pain #
size/complexity 21

logging 12
problem location 9

Figure 15: Weights and occurrences of the pains pertaining to mon-
itoring during the operation stage.

Fig. 15 displays the weights and occurrences of the pains
pertaining to monitoring microservice-based applications.
Similarly to the case of management, the primary chal-
lenge is the intrinsic complexity of monitoring an appli-
cation composed by a huge number dynamically evolving,
heterogeneous microservices.

According to the industrial researchers and practition-
ers authoring the selected industrial studies, such a com-
plexity is partly due to other two significantly discussed
pains, i.e., logging and problem location. 12 of the selected
industrial studies point out the pains due to handling a
huge number of distributed logs, one for each microservice
forming an application. This, along with the distributed
nature of microservice-based application, makes it hard to
identify the source of an issue in an application, as dis-
cussed in 9 of the selected industrial studies.

Fig. 16 illustrates the weights of the pains related to the
resources consumed by a microservice-based application,
during its operation stage. An increase in resource con-
sumption (with respect to monolithic/service-oriented ap-
plications) is significantly recognized by the selected indus-
trial studies. 7 out of the selected industrial studies high-
light how the higher number of running services requires an

10



Pr
ep
rin
t

compute
29%

network
71%

Pain #
network 17
compute 7

Figure 16: Weights and occurrences of the pains pertaining to re-
source consumption during the operation stage.

increased amount of runtime environments, which in turn
results in an increased consumption of compute resources.

The increased consumption of network resources
emerges to be by far more challenging. 17 out of the se-
lected industrial studies highlight that, since the microser-
vices in an application intercommunicate through remote
API invocations, applications generate a much higher net-
work traffic with respect to monoliths (where modules in-
teract through in-memory calls) or service-based applica-
tions (composed by a lower number of services, hence re-
ducing the amount of remote API invocations).

4.3. Microservices Gains

In this section, we first present a taxonomy for classifying
the gains of microservices, and we then illustrate how we
exploited it to analyse current perpectives of industrial
researchers and practitioners on the gains of microservices.

4.3.1. A taxonomy for gains of microservices

We hereby present a taxonomy for classifying gains of mi-
croservices (Table 5). It can be helpful to analyse the cur-
rent state of the art on microservices in the IT industry, as
well as to identify potential trends and research directions.
The proposed taxonomy for gains of microservices was ob-
tained with an approach similar to that for determining
the taxonomy for pains (Sect. 4.2.1).

The obtained taxonomy undergone various iterations
among the authors of this study, and it was also submit-
ted to external experts from two different research institu-
tions. This resulted in some corrections and amendments
to the first version of the taxonomy, and the final outcome
is the taxonomy displayed in Table 5. The latter was then
validated through the inter-rater reliability assessment de-
scribed in Sect. 3.4.

4.3.2. Gains in the selected industrial studies

We classified the selected industrial studies based on the
taxonomy for gains of microservices (Table 5). The ob-
tained classification is displayed in Table 6. Due to rea-
sons of readability and space, the table only captures the
classification over the concerns listed in the taxonomy of
gains5. It still provides a first overview of the coverage of

5The detailed classification, displaying each occurrence of each
gain, is publicly available in the replication package (see Sect. 3.5).

design development operation

architecture

design
patterns

security

testing

storage

microservices

management

deployment

Figure 17: Coverage of the concerns in the taxonomy for gains of
microservices. The size of each bubble is directly proportional to the
number of selected industrial studies discussing a gain pertaining to
the corresponding concern.

gains over the selected studies, which is even more evident
in the bubble plot in Fig. 17. The figure clearly highlights
how biggest gains come from architecture concerns, from
the exploitation of design patterns, from the development
of microservices, and from application peculiarities simpli-
fying their actual deployment and management. Security
design and storage implementation also provide notable
gains, while application testing is not significantly impact-
ing on the advantages of developing microservice-based ap-
plications.

In the following, we provide details on the notable con-
cerns highlighted above. We shall proceed concern-wise,
by listing the occurrences of gains in sorted tables, and by
comparing their weights through %-based pie charts.

Design stage. The main sources of gains during the de-
sign stage are the architecture peculiarities and the ex-
ploitation of design patterns (Fig. 17). This can be ob-
served also in Fig. 18, which shows the evolution of the
coverage of design concerns in the period 2014-2017. The
figure also shows that the interests for gains pertaining to
the architecture concern is steadily increasing, while that
for design patterns instead keeps stable. The same does
not hold for security-related gains, which (after a period
of slight increase) are starting to loose their appeal for
the industrial researchers and practitioners authoring the
selected industrial studies.

The concrete gains due to microservice-based architec-
tures, their weights and occurrences in the selected indus-
trial studies are illustrated in Fig. 19. Bounded contexts
(which are an intrinsic peculiarity of microservice-based
architectures) emerge as the primary architectural gain,
with 24 out of the selected industrial studies highlight-
ing their benefits. The notion of bounded contexts comes
from [5], and it makes microservices selfcontained. A mi-
croservice can be analysed, understood and updated with-
out knowing anything about the internals of the other mi-
croservices in an architecture. This impacts on the gover-
nance of an application, which can be decentralised by as-

11



Pr
ep
rin
t

Stage Concern Gain
Design Architecture Bounded contexts, Cloud native, Decentralised governance, Fault tolerance, Flexibility

Design patterns API gateway, Circuit breaker, Database per service, Message broker, Service discovery
Security Automation, Fine-grained policies, Firewalling, Isolation, Layering

Development Microservices CI/CD, Loose coupling, Reusability, Service size, Technology freedom
Storage Data persistence, Data isolation, Microservice-orientation
Testing Automation, Rollback, Unit testing, Updates

Operation Deployment Containerisation, Independency, Reliability, Speed
Management Fault isolation, Scalability, Updateability

Table 5: A classification framework for gains of microservices.

Design Development Operation
Arc. Des. Sec. Mic. Sto. Tes. Dep. Man.

[S1] • • •
[S2] • • •
[S3] • • •
[S4] • • • • • •
[S5] • • • • • •
[S6] • •
[S7] • •
[S8] • • • • • •
[S9] •
[S10] •
[S11] • • • •
[S12] • • • • •
[S13] • • • • • •
[S14] • • •
[S15] • •
[S16] • • • • • •
[S17] • • • •
[S18] • •
[S19] • • • • • • •
[S20] • • • •
[S21] • •
[S22] • • • • • •
[S23] • • •
[S24] • • •
[S25] • • • •
[S26] • • • • • •

Design Development Operation
Arc. Des. Sec. Mic. Sto. Tes. Dep. Man.

[S27] • • • •
[S28] • • • •
[S29] • • • •
[S30] • • • • • • •
[S31] • • • • •
[S32] • • • • •
[S33] •
[S34] • •
[S35] • •
[S36] • • •
[S37] • • • • • • •
[S38] • • • • • • •
[S39] • • •
[S40] • • • • • •
[S41] • • • • •
[S42] • • • • •
[S44] • • • • • •
[S43] • • •
[S45] • • •
[S46] • • •
[S47] • • •
[S48] • • • • • •
[S49] • • • •
[S50] • • • •
[S51] • • • • • • •

Table 6: Classification of the selected studies based on the concerns listed in the taxonomy for gains of microservices.

0

2

4

6

8

10

12

2014 2015 2016 2017

Architecture Design patterns Security

Figure 18: Yearly evolution of the coverage of the concerns pertaining
to the design stage.

signing the governance of microservices to different groups
(as pointed out by 7 out of the 24 studies discussing the
benefits of bounded contexts).

Industrial researchers and practitioners are also high-
lighting that microservice-based architectures are fault tol-
erant by design, that microservices can be flexibly added
and removed from an architecture, and that microservice-

bounded 
contexts

37%

cloud native
17%

decentr. 
govern. 11%

fault 
toler.

18%

flexibility
17% Gain #

bounded contexts 24
fault tolerance 12
cloud native 11

flexibility 11
decentralised governance 7

Figure 19: Weights and occurrences of the gains pertaining to the
architecture concern during the design stage.

based architectures are cloud native. Fault tolerance and
cloud nativeness of microservice-based architectures are
two of the main reasons why the IT industry is strongly in-
terested in them, with Netflix being one of the most promi-
nent examples [S26],[S12].

The coverage of design patterns is instead displayed in
Fig. 20. The design pattern database per service is the
most discussed in the selected industrial studies, with 20
out of them highlighting that each microservice should be
equipped with its own database (if it needs a persistent

12



Pr
ep
rin
t

API 
gateway

25%

circuit 
breaker

18%

datab. 
per serv.

31%

message 
broker

9%

serv. discovery
17% Gain #

database per service 20
API gateway 16

circuit breaker 12
service discovery 11
message broker 6

Figure 20: Weights and occurrences of the gains pertaining to design
patterns during the design stage.

storage, of course). API gateway and circuit breakers are
also significantly covered. 16 of the selected studies explain
how the API gateway design pattern permits decoupling
the clients of a microservice-based application from its in-
ternals, while 12 studies discuss how circuit breakers can
help mitigating issues due to failures (such as cascading
failures, one of the pains displayed in Fig. 14). Service
discovery and message brokers are also discussed, to miti-
gate the pains of service location and service coordination,
and to allow asynchronous service intercommunications,
respectively. More generally, 30 of the selected studies
were discussing at least one of the above listed patterns,
by also showing how designers exploit them to mitigate
some of the pains discussed in Sect. 4.2. This highlights
the importance of design patterns, and the need for ad-
ditional patterns allowing to further mitigate the pains of
microservice-based architectures [S37].

automation
12%

fine 
grained 
policies

16%

firewalling
36%

isolation
12%

layering
24% Gain #

firewalling 9
layering 6

fine-grained policies 4
automation 3

isolation 3

Figure 21: Weights and occurrences of the gains pertaining to secu-
rity during the design stage.

Microservice-based architectures are also bringing some
security-related gains, whose coverage in the selected in-
dustrial studies is displayed in Fig. 21. Firewalling emerges
as the primary gain, with 9 of the selected industrial
studies discussing how API gateways can simplify it in
microservice-based architectures.

Other gains worth mentioning are due to the support
of layered and fine-grained security policies. By defining
hierarchical groupings of the microservices forming an ar-
chitecture, designers can apply differently grained secu-
rity policies to the different layers in a hierarchy. The
partitioning of applications into small, independent mi-
croservices also simplifies the design of automated secu-
rity policies and it favours a better isolation among the
different components in an application (with respect to
monolithic/service-oriented architectures).

Development stage. According to Fig. 17, the devel-

opment of microservices is the main source of gains in
microservice-based architectures. This is also witnessed
by the yearly coverage of development-related concerns
(Fig. 22). The recognition of gains pertaining to the devel-
opment of microservices is steadily increasing since 2014,
and it keeps much higher with respect to that of the gains
pertaining to storage.

0

5

10

15

2014 2015 2016 2017

Microservices Storage

Figure 22: Yearly evolution of the coverage of the concerns pertaining
to the development stage.

The coverage of the concrete gains due to the development
of microservices is displayed in Fig. 23, which also dis-
plays their weights in the selected industrial studies. The
loose coupling (which allows to independently develop the
microservices forming an application) and the freedom in
choosing the technology stack for implementing each mi-
croservices are the most attractive gains. They are strictly
related to one another, and their grouping is by far more
covered with respect to the other gains pertaining to the
development of microservices.

CI/CD
18%

loose 
coupling

31%
reusability 7%

service 
size
16%

technology 
freedom

28%
Gain #

loose coupling 27
technology freedom 24

CI/CD 15
service size 14
reusability 6

Figure 23: Weights and occurrences of the gains pertaining to the
concrete development of microservices.

Another significant gain emerging from the selected in-
dustrial studies is related to CI/CD, a DevOps practice
enabling the continuous release of updated versions of a
software [16]. As pointed out by 15 of the selected indus-
trial studies, microservices natively support CI/CD. The
latter can be directly operated on microservices, hence al-
lowing to continuously and independently release updated
versions of the microservices forming an application.

The actual size of microservices and their reusability
are also discussed in the selected industrial studies. As
reusability is peculiar to many service-based architectural
style, it is more interesting to comment on how the actual
size of microservices impacts on their development. Mi-
croservices focus on doing one thing well, and their busi-

13



Pr
ep
rin
t

ness logic turn out to be small and self-contained [S31].
14 of the selected studies highlight how this makes them
quick to develop and easy to understand for new personnel
assigned to their development and maintenance.

data persist. 5%

data 
isolation

24%

microser. 
orient.

71%

Gain #
microservice orientation 15

data isolation 5
data persistence 1

Figure 24: Weights and occurrences of the gains pertaining to storage
during the development stage.

Microservices have also some positive impact on storage
concerns (Fig. 17). The coverage of the storage-related
gains in the selected industrial studies is reported in
Fig. 24. The only gain significantly covered is that related
to the microservice orientation of storage. 15 of the se-
lected industrial studies indeed highlight that, when a mi-
croservice must be equipped with a backend database, its
developer can freely choose the database type (e.g., SQL
or NoSQL) and how to structure the data in it. This is
because the only service accessing to such database will be
the microservice she is developing (following the database
per service design pattern).

Operation stage. As shown by Fig. 17, microservices
provide significant benefits also during the operation stage.
The recognition of gains pertaining to the deployment and
management of microservices is steadily increasing since
2014 (Fig. 25). By crossing this data with the technology
waves highlighted by Jamshidi et al. [13], we can observe
that the more technology for supporting microservices is
getting mature, the more microservice become attractive
for the gains they bring while being operated.

0

5

10

15

20

2014 2015 2016 2017

Deployment Management

Figure 25: Yearly evolution of the coverage of the concerns pertaining
to the operation stage.

The coverage and weights of the gains pertaining to the de-
ployment of microservices are illustrated in Fig. 26. The
primary gain is independency. 19 of the selected industrial
studies highlight that microservices can be deployed and
undeployed independently from one to another. Microser-
vices are designed and developed to be self-contained in a

bounded context. Even if a microservice is exploiting (at
runtime) some functionalities provided by other microser-
vices, it can be deployed without requiring their availabil-
ity. Once running, if one of the required microservices is
not available (because it has not been deployed yet, or be-
cause it failed), the deployed microservice continue to be
running, even if partly working [S31].

containerisation
25%

independency 39%

reliab.
14%

speed
22%

Gain #
independency 19

containerisation 12
speed 11

reliability 7

Figure 26: Weights and occurrences of the gains pertaining to de-
ployment during the operation stage.

Other significant gains are related to containerisation
and speed of deployment. Containers (and Docker, in par-
ticular) emerge as the natural way of packaging and ship-
ping microservices, hence fostering the build of portable,
cloud-based deployments. This, along with the fact that
microservices are small sized, makes microservices very
fast to get up and running.

fault 
isolation

24%

scalability
52%

updateability
24%

Gain #
scalability 31

fault isolation 14
updateability 14

Figure 27: Weights and occurrences of the gains pertaining to man-
agement during the operation stage.

Fig. 27 instead displays the coverage and weights of the
gains that microservices bring to the operation of the man-
agement of applications. The figure clearly shows tha scal-
ability emerges as the primary gain for the industrial re-
searchers and practitioners authoring the selected studies.
31 of the selected industrial studies indeed highlight how
microservice applications naturally support the horizontal
scaling of their microservices, as well as how microservices
scale quickly and reactively (also thanks to their indepen-
dence and speed of deployment).

Fault isolation and updateabilty are also significantly
recognised as gains pertaining to the management of
microservice-based applications. 14 of the selected studies
point out that the partitioning of application in bounded
microservices simplifies the operation of fault isolation,
also thanks to the exploitation of the design pattern called
circuit breaker (discussed earlier). 14 of the selected stud-
ies instead point out that, thanks to the independence
among the microservices in an application, live upgrades
and live updates can be applied to a running microservice,

14



Pr
ep
rin
t

without requiring to touch the other microservices of an
application.

4.4. Summary

Since 2014, when James Lewis and Martin Fowler gave rise
to the microservice-based architectural style with their fa-
mous blog post [S22], microservices are steadily attracting
increasing attention by the IT industry. This is supported
by the trends discussed in Sect. 4.1, which answered to
our Q1 by illustrating how communities of practitioners
and IT companies are more and more involved in indus-
trial research on microservices. The growing interest in
microservices by the IT industry is even more evident if
we focus on the contributions published last year, whose
vast majority was directly provided by IT companies.

The contents presented in the selected industrial studies
span from discussing advantages and disadvantages of mi-
croservices, to proposing design patterns and sharing best
practices to better leverage of microservices. This is in
line with our research questions Q2 and Q3, which were
answered in Sects. 4.2 and 4.3, respectively. In the follow-
ing, we report the main findings resulting from the analysis
of the selected industrial studies, based on our taxonomies
for pains and gains of microservices (Table 3 and Table 5,
respectively).

4.4.1. Summary of Pains

The pains of microservice-based applications are mainly
due to their intrinsic complexity. As recognized by almost
all the selected industrial studies, the design, the devel-
opment and/or the operation of microservice-based appli-
cations is hampered by the fact that the business logic in
such applications is heavily distributed over many indepen-
dent and asynchronously evolving microservices. This gen-
erates various design, development and operational chal-
lenges, which are recapped below.

At design time, the primary pain the design of
microservice-based applications is the dimensioning of ser-
vices. It is indeed often difficult to determine the par-
titioning of an application in bounded contexts, as the
boundaries among the different business capabilities of an
application are usually not sharp. The fact that intercom-
munications are purely based on remote API invocations
is also creating concrete pains. The API provided by a
microservice becomes a sort of contract between such mi-
croservice and the microservices consuming its API. This
directly impacts on the versioning of APIs, as new API
version must always be retro-compatible to avoid violating
the contracts among microservices, hence allowing them to
continue to intercommunicate.

Security is also generating pains at design-time, mainly
due to access control and endpoint proliferations. Ac-
cess control is one of the main challenges, as the design
of microservice-based application should allow to the mi-
croservices forming an application to quickly and con-
sistently ascertain the provenance and authenticity of a

request (which is far from being easy due to the heav-
ily distributed nature of microservice-based applications).
Additionally, endpoints proliferate in microservice-based
applications, as all their microservices are exposing re-
motely accessible APIs exposed. The attack surface to
be secured is hence much larger with respect to classical
monolithic/service-oriented applications.

At development time, the primary pains come from
storage-related issues. By distributing the storage over
the many microservices forming an application, it becomes
challenging to ensure data consistency. Eventual consis-
tency is an option to mitigate this pain, even if not always
viable and not easy to implement too. At the same time,
the heavy distribution of data makes it challenging also to
implement distributed transaction, and even to query the
data (also because of the heterogeneity of the data stores
to be queried).

Testing is also paining the job of developers.
Microservice-based application partition their business
logic over independently evolving services, and this makes
it challenging to measure the performances of the applica-
tion itself. This especially holds when developers are re-
quired to test the user experience of a microservice-based
application [S34].

The operation of microservice-based applications is also
pained by their distributed and dynamic nature. Microser-
vices can flexibly be added or removed from an application,
they can be scaled in and out, or they can be migrated from
one host to another. This, along with the huge number of
microservices forming an application, makes it challenging
to locate and coordinate the concrete instances of the mi-
croservices in an application. Additionally, if not properly
isolated, a failing instance of a microservice can generate a
cascade of failure in the microservice instances depending
on it.

At the same time, the distribution of the instances of
the microservices in an application, results in the distri-
bution of their logs. Delving through many distributed
logs is of course a pain, especially when the operators of a
microservice-based application are required to identify the
reasons/problem causing an issue in such application.

The primary pain during the operation of microservice-
based applications is however given by their resource con-
sumption. The require to run more services with respect
to monolithic and service-based application, which require
more runtime environments to be distributed, and which
interact based on remote API invocations. This increases
their consumption of compute and network resources, with
the latter being the primary worry of the industrial re-
searchers and practitioners authoring the selected studies.

4.4.2. Summary of Gains

The primary gains of microservices are due to peculiar
properties of microservice-based architectures, to design
patterns allowing to better exploit them, to the ease of
development of the microservices in an application, and to

15



Pr
ep
rin
t

the possibility of independently deploying and managing
the microservices in an application.

Consider the design of microservice-based architectures.
Despite identifying the partitioning of applications in
bounded contexts is not easy, microservices actually gain
from the boundedness of their context. A microservice
is self-contained, and it can be analyzed, understood and
updated without knowing anything about the rest of the
architecture it is part of. This positively impacts on
the governance of applications, which can be decentral-
ized by assigning the governance of different microservices
to different groups. Additionally, bounded contexts en-
force fault tolerance by design, and they permit flexibly
adding and removing microservices to and from an archi-
tecture. The resulting architectures are also cloud-native,
as their bounded contexts/microservices can be indepen-
dently managed over different cloud platforms.

The mostly recognized gains at design-time are how-
ever those related to the exploitation of design patterns.
The design pattern database per service permits enforc-
ing the independence among microservices, by equipping
each microservice with its own data store (if needed). API
gateways permit decoupling the clients of a microservice-
based application from its internals, while circuit breakers
and service discovery to mitigate the pains related to the
failure and service coordination/location of microservices.
The importance of design patterns for mitigating the pains
of microservices is also explicitly highlighted by Richard-
son [S37].

The distributed nature of microservices can also pro-
vide some security-related gains, even the pains it brings
are more significantly recognized in the selected grey liter-
ature. Microservice-based architecture indeed naturally
support the possibility of defining hierarchical security
policies, with differently grained security policies associ-
ated with different levels in a hierarchy. Design patterns
also help securing microservices, with the API gateway
emerging as the most prominent example, as it thoroughly
simplifies firewalling microservice-based architectures.

Development emerges by far as the stage gaining most
from microservices. In this perspective, the most impor-
tant gains recognized by the industrial researchers and
practitioners authoring the selected studies are the loose
coupling among the microservices in an application (which
permits independently developing them), the freedom in
choosing the technology stack for developing a microser-
vice, and the possibility of choosing the data store that
best suits the needs of a microservice.

Other important gains come from the ease of use of De-
vOps techniques in microservice-based applications, and
from the actual size of the microservices forming an appli-
cation. On the one hand, CI/CD can be directly operated
on each microservice in an application, hence allowing to
continuously release updated/upgraded versions of such
microservice, independently from the rest of an applica-
tion. On the other hand, microservices focus on doing on

thing and on doing it well, with a business logic that turns
out to be small and self-contained [S31]. This makes it
quick their development, as well as their understanding by
new personnel assigned to their development and mainte-
nance.

Finally, consider the operation of microservice-based ap-
plications. The possibility of independently deploying the
microservices in an application is recognized as one of the
most important gains due to microservices. A microservice
can indeed be deployed without requiring the availability
of other microservices, even if it exploits their function-
alities at runtime. Once running, if one of the required
microservices is not available (because it has not been de-
ployed yet, or because it failed), the deployed microservice
continue to be running, even if partly working [S31]. This
simplifies the orchestration of the deployment of microser-
vices, and it is the source of other related gains, e.g., reli-
ability, fault isolation, and the possibility of applying live
updates/upgrades to a running microservices, without be-
ing required to touch the other microservices in an appli-
cation.

Independence of deployment is second only to scalabil-
ity, which is by far recognized as the most important gain
of microservices during the operation stage. Microservice-
based applications naturally support the horizontal scal-
ing of their microservices, and their scaling is quick and
reactive (also thanks to their independence and speed of
deployment).

Microservices also benefit from their natural integration
with container-based platforms, as each microservice can
be packaged and shipped in its own container. This makes
microservice-based applications easy to be deployed on and
migrated over multiple cloud platforms, as containers (and
Docker containers, in particular) are nowadays widely sup-
ported by cloud providers [17].

5. Discussion

5.1. Relation with previous surveys and the road ahead

We hereby discuss the relation with the results presented
in this study and those illustrated by previous surveys on
microservices. The coverage of the identified pains and
gains in such surveys is illustrated in Table 7.

We can observe that the recognition of architecture-
related pains and gains in previous surveys is aligned with
that in our study. The same applies to the recognition of
the gains pertaining to design patterns, to the development
of microservices, and to the deployment and management
of microservice-based applications.

On the other hand, the recognition of pains and gains
pertaining to other concerns in previous surveys is not
aligned with that in our study. This confirms that there is
a gap between the industrial understanding and state-of-
practice on microservices and the state-of-the-art of aca-
demic research. As highlighted by Jamshidi et al. [13],

16



Pr
ep
rin
t

Design Development Operation
Arc. Sec. Sto. Tes. Man. Mon. Res.

[3] 1/5 1/6 2/4 1/3 2/4 1/3 0/2
[10] 2/5 1/6 1/4 0/3 1/4 1/3 1/2
[18] 2/5 1/6 0/4 2/3 3/4 1/3 0/2
[22] 5/5 0/6 0/4 1/3 2/4 0/3 0/2
[23] 2/5 1/6 2/4 1/3 3/4 1/3 0/2
[25] 1/5 1/6 0/4 0/3 1/4 1/3 0/2

(a)

Design Development Operation
Arc. Des. Sec. Mic. Sto. Dep. Man.

[3] 5/5 2/4 0/5 2/5 0/4 3/4 1/3
[10] 3/5 0/4 0/5 3/5 0/4 1/4 3/3
[18] 4/5 4/4 0/5 3/5 0/4 3/4 1/3
[22] 1/5 2/4 0/5 2/5 0/4 1/4 2/3
[23] 3/5 4/4 1/5 5/5 2/4 3/4 2/3
[25] 4/5 1/4 0/5 2/5 0/4 2/4 2/3

(b)

Table 7: Coverage of the identified (a) pains and (b) gains in previous
surveys on microservices. (Cell i, j shows the fraction of pains or
gains pertaining to concern j that are recognized by survey i.)

one possible reason is that academia have limited access to
industry-scale microservice-based application. This makes
it difficult to academic researchers to concretely experience
the technical and non-technical issues that might occur in
real-world microservice production environments.

The above especially holds where the higher gap is reg-
istered, namely (i) for security-related pains and gains,
(ii) for the difficulties in testing microservice-based appli-
cations (and especially their performances), (iii) for the
pains in monitoring microservices, and (iv) for the is-
sues due to the fact that microservices are highly resource
consuming. All such issues are significantly recognized
by industrial researchers and practitioners working with
industry-scale application, while the academia still needs
to concretely experience and work on them. This in turn
means that solutions for (i) enforcing security policies in a
decentralised manner, (ii) supporting performance testing
of microservice-based applications, (iii) easing their mon-
itoring, and especially logging and problem location, and
(iv) optimizing their resource consumption are (and must
be) research directions for future work by both industrial
and academic researchers.

Other interesting research directions are related to con-
crete pains that still need to be addressed. For instance,
there is a need for methodologies and techniques easing the
dimensioning and versioning of microservices, and simpli-
fying the execution of transactions/queries on distributed
and heterogeneous data stores.

Nonetheless, even if some of the primary pains and
gains have already been investigated, there is still a lot
of work to do on them. A concrete example is the
study of microservice-oriented design patterns, as indus-
trial researchers and practitioners strongly believe that
they are key to mitigate/nullify the pains of microservices.
While various design patterns have already been proposed
(e.g., those listed in the blog http://microservices.io

by Chris Richardson) many other are yet to be investi-
gated to further mitigate the pains of microservices [S37].
A first research effort in this direction is given by Taibi et
al. [23], which further witnesses the need for investigating
and formalizing design patterns allowing to better exploit
microservices.

5.2. Observations on systematic grey literature reviews

Our work led to two major observations on difficulties
and potentials of conducting systematic grey literature re-
views, which could be of help for researchers willing to
perform them. We discuss them hereafter:

• We observed that the combination of systematic lit-
erature review protocols with grey literature studies
can be valuable to shed light on yet uncharted areas
of software engineering research, especially when such
areas are seeing massive industrial adoption. This is
the case of microservices, where we observed a mas-
sive proliferation of grey literature, with more than
10000 articles on disparate sub-topics arranged be-
tween blogs, posts, comments, articles, white-papers,
technology evaluations, technical reports and videos.
A systematic review protocol allows to distill the es-
sential state-of-practice on a sub-topic (such as the
pains and gains of microservices, in our case), which
can be of help for researchers and practitioners.

• At the same time, we discovered that it is very diffi-
cult to uniquely measure the quality of grey literature
when conducting a systematic, controllable and repli-
cable secondary study. This is mainly because grey
literature lacks an unique format acknowledged across
all sources and available data. This lacking inspired
us to build a rudimentary quality control framework
(see Sect. 3.3), which can be of help to researchers
willing to perform systematic grey literature reviews
in software engineering. Anyway, strategies and ap-
proaches for multivocal literature research should be
explored further, especially concerning quality control
of grey literature, both standalone and in combination
with white literature.

It is also worth highlighting that we observed intrinsic
differences in classifying videos with respect to the other
types of industrial studies (i.e., blog posts and whitepa-
pers). We were able to evaluate the inclusion/exclusion
criteria on blog posts and whitepapers by giving them a
first, light read. With a second, deeper read, we were
then able to classify them by applying our taxonomies of
pains and gains. The same did not happen with videos,
which we were required to carefully follow from the very
first time. As a consequence, the search and classifica-
tion of videos was significantly more time-consuming with
respect to that of blog posts and whitepapers.

At the same time, videos gave us less room for inter-
pretation, also thanks to the fact that the contributions

17

http://microservices.io


Pr
ep
rin
t

contained in videos are actually presented by the authors
of the studies themselves (who decide what to focus on, by
discussing it more in detail, and how). This resulted in us
being more aligned when classifying videos with respect of
when we were classifying blog posts and whitepapers.

5.3. Threats to Validity

Based on the taxonomy developed by Wohlin et al. [26],
four potential threats of validity may apply to our study,
i.e., threats to external validity, threats to construct and
internal validities, and threats to conclusions validity.

5.3.1. Threats to external validity

External validity concerns the applicability of a set of re-
sults in a more general context [26]. Since our primary
studies are obtained from a large extent of online sources,
our results and observations may be only partly applica-
ble to the the broad area of practices and general dis-
ciplines of microservices practices and general discipline,
hence threatening external validity.

To reinforce the external validity of our findings, we or-
ganized 4 feedback sessions during our systematic analysis
of grey literature on microservices. We analyzed the dis-
cussion following-up from each feedback session, and we
exploited this qualitative data to fine-tune both our re-
search methods and the applicability of our findings. We
also prepared a bundle of all artifacts we produced during
our analysis, so as to make it available to all who wish
to deepen their understanding on our data (see Sect. 3.5).
We are confident that this can help in making our results
and observations more explicit and applicable in practice.

On another front, there is a risk of having missed rele-
vant industrial studies, due to the fact that concepts re-
lated to those included in our search strings are differ-
ently named in such studies (e.g., a study discussing some
pains of microservices may not employ the terms “pain” or
“gain”, but rather some synonyms). This holds especially
for videos, as our search strings were matched only against
their title and description. To mitigate this threat to va-
lidity, we have explicitly included all relevant synonyms
in our search strings (by looking among those listed in the
Merriam-Webster’s dictionary), and we have also exploited
the features offered by search engines, which naturally sup-
port considering related terms for all those contained in a
search string.

5.3.2. Threats to construct and internal validities

According to Wohlin et al. [26], construct validity concern
the generalizability of the constructs under study, while
internal validity concerns the validity of the methods em-
ployed to study and analyze data (e.g., the types of bias
involved).

To mitigate these threats, we adopted various triangu-
lation rounds and inter-rater reliability assessment meth-
ods (see Sect. 3.4), which were conceived to avoid bias
by triangulation. To further reinforce internal and con-
struct validity, the initially obtained taxonomies for pains

and gains were submitted to two external domain-experts
from two different research institutions, and the analysis
results were checked by another external reviewer which is
not among the authors and not belonging to the software
engineering field.

5.3.3. Threats to conclusions validity

The validity of conclusions concerns the degree to which
the conclusions of a study are reasonably based on the
available data [26].

To mitigate this threat, we exploited theme coding and
inter-rater reliability assessment to limit observer bias and
interpretation bias, with the ultimate goal of performing
a sound analysis of the data we retrieved. Additionally,
the conclusions drawn in this article were independently
drawn by each of us, and they were then double-checked
against the selected industrial studies or related studies in
a joint discussion session.

6. Conclusions

Microservices are nowadays adopted by many IT compa-
nies to deliver their business, with Amazon, Netflix, Spo-
tify, and Twitter being the most prominent examples. Due
to the huge investment by companies, the industrial state-
of-practice on microservices is rapidly evolving and it has
already reached some degree of maturity. At the same
time, academic research efforts are still at an early stage,
as also discussed by existing secondary studies, e.g., Pahl
et al. [18], Vural et al. [25]. This resulted in a sort of gap
between academic state-of-the-art and industrial state-of-
practice.

The objective of this article was to try to bridge the
above mentioned gap by following the guidelines provided
by Garousi et al. [9]. Our aim was indeed to complement
academic state-of-the-art with a systematic analysis of the
industrial grey literature on pains and gains of microser-
vices. We followed a systematic approach based on that
proposed by Petersen et al. [19], which allowed us to se-
lect 51 industrial studies, and to analyse them to distill
the pains and gains of designing, developing and operat-
ing microservices.

Our study showed that microservices are steadily gain-
ing increasing attention by the IT industry, since 2014
(when they were first defined by Lewis and Fowler). It
also showed that the understanding of pains and gains
of microservices is quite mature in the industry, hence
meaning that the academia has much to learn from the
industry on the topic. The identified pains are mainly
related to the intrinsic complexity of microservice-based
applications, while the gains relate to peculiar properties
of microservice-based architectures, to design patterns al-
lowing to better exploit them, and to the possibility of
independently deploying and managing the microservices
in an application. Both pains and gains can be useful to
delineate research directions, as we discussed in Sect. 5.1.

18



Pr
ep
rin
t

We believe that both researchers and practitioners can
benefit from our study. Our findings can indeed be ex-
ploited by researchers to develop new theories and solu-
tions, to analyze and experiment research implications,
and to establish future research dimensions. At the same
time, our study summarizes the currently recognized pains
and gains of microservices, and their maturity. Practition-
ers can hence exploit our findings as a starting point for
microservices experimentation or as a guideline for day-
by-day work with microservices.

In the scope of our future work, we plan to extend our anal-
ysis, by trying to identify which design principles for mi-
croservices stem from the industrial literature. We indeed
plan to understand whether there already exist a number
of design principles for microservices, intended as sound
microservices design, development, and deployment deci-
sions that lead to beneficial or more controllable microser-
vice orchestrations.

We also plan to devise a methodology for metering
“how much” each pain is actually paining a microservice-
based application, and how intense are its gains. Indeed,
even if the selected industrial studies recognise techni-
cal/operational pains and gains of microservices, they do
not provide any quantitative information. This is mainly
because a concrete solution for measuring the intensity of
each pain/gain in a given microservice-based application
is currently lacking (as pointed out by Zimmermann [27],
and by [S45] and [S6], for instance). Such a metering so-
lution would permit tackling design decisions, by allowing
to tune microservice-based architectures in order to max-
imize desired gains and to minimize unacceptable pains.

It is finally worth noting that our study focused on elicit-
ing the technical/operational pains and gains of microser-
vices. However, as highlighted by Jamshidi et al. [13],
organisational issues are also part of current and future
challenges of microservices, from both the industrial and
academic perspectives. This is why we plan to comple-
ment this study with a follow-up study, where we plan to
systematically analyse grey literature to elicit the organi-
sational benefits and drawbacks of microservices.

In this perspective, another (orthogonal) direction for
our future work is the investigation and development of
a systematic approach for grey literature reviews. To the
best of our knowledge, ours is one of the first systematic
grey literature reviews in the scope of software engineering,
and there is a need for a protocol allowing to conduct sys-
tematic grey literature reviews [8]. This also follows from
the lessons we learned with our study (see Sect. 5.2), where
we observed that the combination of systematic literature
review protocols (such as that by Petersen et al. [19]) with
grey literature studies can be valuable to shed light on
yet uncharted areas of software engineering research, es-
pecially when such areas are characterized by a massive
industrial adoption.

References

[1] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Mi-
croservices architecture enables DevOps: Migration to a cloud-
native architecture. IEEE Software, 33(3):42–52, 2016.

[2] Jürgen Buder and Ulrike Creß. Manual or electronic? the role
of coding in qualitative data analysis. Educational Research,
45(2):143–154, 2003.

[3] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Re-
search on architecting microservices: Trends, focus, and poten-
tial for industrial adoption. In 2017 IEEE International Con-
ference on Software Architecture (ICSA), pages 21–30. IEEE
Computer Society, 2017.

[4] Thomas Erl, Paulo Merson, and Roger Stoffers. Service-
Oriented Architecture: Analysis and Design for Services and
Microservices. Prentice Hall, 2017.

[5] Eric Evans. Domain-Driven Design: Tacking Complexity In
the Heart of Software. Addison-Wesley Longman Publishing
Co., Inc., 2003.

[6] Dominic Farace and Joachim Schöpfel, editors. Grey literature
in library and information studies. K.G. Saur, 2010.

[7] Thomas C. Fountain. Web service oriented architecture: “Smart
operations” and IT strategy. In Liang-Jie Zhang, editor, ICWS,
pages 481–486. CSREA Press, 2003.

[8] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. The
need for multivocal literature reviews in software engineering:
Complementing systematic literature reviews with grey litera-
ture. In Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, EASE
2016, pages 26:1–26:6. ACM, 2016.

[9] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. Guide-
lines for including the grey literature and conducting mul-
tivocal literature reviews in software engineering. CoRR,
abs/1707.02553, 2017.

[10] Javad Ghofrani and Daniel Lübke. Challenges of microser-
vices architecture: A survey on the state of the practice. In
Nico Herzberg, Christoph Hochreiner, Oliver Kopp, and Jörg
Lenhard, editors, Proceedings of the 10th Central European
Workshop on Services and their Composition, Dresden, Ger-
many, February 8-9, 2018, volume 2072 of CEUR Workshop
Proceedings, pages 1–8. CEUR-WS.org, 2018.

[11] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. De-
cision models for microservices: Design areas, stakeholders,
use cases, and requirements. In Antónia Lopes and Rogério
de Lemos, editors, Software Architecture, ECSA 2017, volume
10475 of Lecture Notes in Computer Science, pages 155–170.
Springer, 2017.

[12] Sara Hassan and Rami Bahsoon. Microservices and their de-
sign trade-offs: A self-adaptive roadmap. In Jia Zhang, John A.
Miller, and Xiaofei Xu, editors, 2016 IEEE International Con-
ference on Services Computing (SCC), pages 813–818. IEEE
Computer Society, 2016.

[13] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonca, James
Lewis, and Stefan Tilkov. Microservices: The journey so far
and challenges ahead. IEEE Software, 35(3):24–35, 2018.

[14] Barbara Kitchenham and Stuart Charters. Guidelines for per-
forming systematic literature reviews in software engineering.
Technical Report EBSE-2007-01, School of Computer Science
and Mathematics, Keele University, 2007.

[15] Klaus Krippendorff. Content Analysis: An Introduction to Its
Methodology (second edition). Sage Publications, 2004.

[16] Michael Nygard. Release It!: Design and Deploy Production-
Ready Software. Pragmatic Bookshelf, 2007.

[17] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan
Jamshidi. Cloud container technologies: A state-of-the-art re-
view. IEEE Transactions on Cloud Computing, 2017.

[18] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic
mapping study. In Proceedings of the 6th International Con-
ference on Cloud Computing and Services Science - Volume 1
and 2, CLOSER 2016, pages 137–146. SCITEPRESS, 2016.

[19] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael
Mattsson. Systematic mapping studies in software engineering.

19



Pr
ep
rin
t

In Proceedings of the 12th International Conference on Eval-
uation and Assessment in Software Engineering, pages 68–77.
BCS Learning & Development Ltd., 2008.

[20] Alan Sill. The design and architecture of microservices. IEEE
Cloud Computing, 3(5):76–80, 2016.

[21] Maximilian Stempfhuber, Philipp Schaer, and Wei Shen. En-
hancing visibility: Integrating grey literature in the sowiport
information cycle. In Ninth International Conference on Grey
Literature: Grey Foundations in Information Landscape, num-
ber 9 in GL-conference series, 2008.

[22] Davide Taibi and Valentina Lenarduzzi. On the definition of
microservice bad smells. IEEE Software, 35(3):56–62, 2018.

[23] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Architec-
tural Patterns for Microservices: A systematic mapping study.
In Proceedings of the 8th International Conference on Cloud
Computing and Services Science, CLOSER 2018, pages 221–
232. SCITEPRESS, 2018.

[24] Johannes Thönes. Microservices. IEEE Software, 32(1):113–
116, 2015.

[25] Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic
literature review on microservices. In Osvaldo Gervasi, Beni-
amino Murgante, Sanjay Misra, Giuseppe Borruso, Carmelo M.
Torre, Ana Maria A.C. Rocha, David Taniar, Bernady O. Ap-
duhan, Elena Stankova, and Alfredo Cuzzocrea, editors, Com-
putational Science and Its Applications – ICCSA 2017, volume
10409 of Lecture Notes in Computer Science, pages 203–217.
Springer International Publishing, 2017.

[26] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Bjöorn Regnell, and Anders Wesslén. Experimentation in soft-
ware engineering: an introduction. Kluwer Academic Publish-
ers, 2000.

[27] Olaf Zimmermann. Microservices tenets. Computer Science -
Research and Development, 32(3):301–310, 2017.

Appendix A. Selected Industrial Studies

[S1] Vijay Alagarasan. Seven Microservices Anti-Patterns. InfoQ,
2015. https://www.infoq.com/articles/seven-uservices-

antipatterns

[S2] Abel Avram. The Strengths and Weaknesses of Microser-
vices. InfoQ, 2014. https://www.infoq.com/news/2014/05/

microservices

[S3] Vineet Badola. Microservices Architecture: Ad-
vantages and Drawbacks. CloudAcademy’s blog,
2015. https://cloudacademy.com/blog/microservices-

architecture-challenge-advantage-drawback

[S4] Scott Carey. The Pros and Cons of Microservices. Com-
puterWorldUK, 2016. https://www.computerworlduk.com/

applications/pros-cons-of-microservices-lessons-learned

-by-comparethemarketcom-3642668/

[S5] Chakray. What Are Microservices? Definition, Characteris-
tics, Advantages and Disadvantages. Chakray’s blog, 2017.
https://www.chakray.com/en/what-are-microservices-defin

ition-characteristics-and-advantages-and-disadvantages

[S6] Clifton Cunnigham, Owen Garret, Matteo Col-
lina, Mark Little. Pros/cons of highly scalable
micorservice systems. Microservices Day, 2017.
https://www.youtube.com/watch?v=w 0z sKkul0

[S7] David Dawson. Testing Microservices: Pain or Opportunity?.
Microservices Manchester, 2016. https://www.youtube.com/

watch?v=AjQlyzoFrsM

[S8] Dev2. The pros and cons of microservices. Dev2 Technologies,
2015. https://www.youtube.com/watch?v=li2BSeNbo8c

[S9] Rohit Dhall. Performance Patterns in Microservices-based
Integration. DZone, 2016. https://dzone.com/articles/

performance-patterns-in-microservices-based- integr-1

[S10] Niels Dommerholt. Micro Services: Versioning Strategies.
Niels.nu, 2016. http://niels.nu/blog/2016/microservice-

versioning.html

[S11] John E. Dunn. What are microservices? ComputerWorldUK,
2016. https://www.computerworlduk.com/applications/

microservices-explained-is-this-just-tweaked-soa-or-

something-much-bigger-3638372

[S12] Josh Evans. Mastering chaos - A Netflix guide to microservices.
QCon, InfoQ, 2016. https://www.youtube.com/watch?v=

CZ3wIuvmHeM

[S13] Martin Fowler. Microservices Trade-Offs. MartinFowler.com,
2015. https://martinfowler.com/articles/microservice-

trade-offs.html

[S14] Bernard Golden. 5 Fundamentals to a Succesful Microser-
vices Design. TechBeacon, 2016. https://techbeacon.com/

5-fundamentals-successful-microservice-design

[S15] Andreas Grabner. Locating Common Micro Service Perfor-
mance Anti-Patterns. InfoQ, 2016. https://www.infoq.com/

articles/Diagnose-Microservice-Performance-Anti-Patterns

[S16] Philipp Hauer. Microservices in a Nutshell: Pros and
Cons. Philipphauer.de, 2015. https://blog.philipphauer.de/
microservices-nutshell-pros-cons

[S17] Pete Heard. What are Microservices? [Costs and Bene-
fits]. LogicRoom.co, 2017. https://www.logicroom.co/what

-are-microservices-costs-and-benefits

[S18] Troy Hunt. Your API Versioning is Wrong. DZone, 2014.
https://dzone.com/articles/your-api-versioning-wrong

[S19] Kasun Indrasiri. Microservices in Practice: From Architec-
ture to Deployment. DZone, 2016. https://dzone.com/

articles/microservices-in-practice-1

[S20] Siva Kumar. Advantages and Disadvantages of Microservices.
Linkedin Pulse, 2017. https://www.linkedin.com/pulse/

advantages-disadvantages-microservices-siva-kumar

[S21] Graham Lea. Microservices Security: All the Ques-
tions You Should Be Asking. Grahamlea.com, 2015.
http://www.grahamlea.com/2015/07/microservices-security

-questions

[S22] James Lewis, Martin Fowler. Microservices: A Definition
of this New Architectural Term. MartinFowler.com, 2014.
https://martinfowler.com/articles/microservices.html

[S23] Joshua Long. The Power, Patterns and Pains of Microser-
vices. DZone, 2015. https://dzone.com/articles/the-power-

patterns-and-pains-of-microservices

[S24] Rory MacDonald. Microservices: Pros & Cons of Using Mi-
croservices On A Project. MadeTech.com, 2015. https://www.

madetech.com/blog/microservices-pros-and-cons

[S25] Scott Matteson. 10 Tips for Securing Microservice Architec-
tures. TechRepublic, 2017. https://www.techrepublic.com/

article/10-tips-for-securing-microservice-architecture

[S26] Tony Mauro. Adopting Microservices at Netflix:
Lessons for Architectural Design. Nginx’s blog, 2015.
https://www.nginx.com/blog/microservices-at-netflix-

architectural-best-practices

[S27] Micro Technologies. Microservices. MicroDocs, 2017.
https://micro.mu/docs/microservices.html

[S28] Per Minborg, Emil Forslund. Three Microservice Patterns to
Tear Down Your Monoliths. JavaOne, 2017. https://www.

youtube.com/watch?v=yxZm0Fhn9Tk

[S29] John Mueller. Performance Issue Considerations
for Microservices APIs. Smartbear’s blog, 2015.
https://blog.smartbear.com/software-quality/performance

-issue-considerations-for-microservices-apis

[S30] Sam Newman. The Principles of Microservices. O’Reilly, 2016.
https://www.safaribooksonline.com/videos/the-principles

-of/9781491935811

[S31] Ekaterina Novoseltseva. Benefits of Microservices Architecture
Implementation. DZone, 2017. https://dzone.com/articles/

benefits-amp-examples-of-microservices-architectur

[S32] Arvind Patil. Microservices Architectural Style. Valtech’s
blog, 2017. https://www.valtech.com/blog/microservices

-architectural-style

[S33] Ranga Rajagopalan. Rethinking Application Secu-
rity with Microservices Architectures. DarkRead-
ing.com, 2016. https://www.darkreading.com/endpoint/

20



Pr
ep
rin
t

rethinking-application-security-with-microservices-

architectures/a/d-id/1325155

[S34] Henrik Rexed. Testing & Monitoring the Per-
formances of Microservices. NeoTys’ blog, 2015.
https://www.neotys.com/blog/testing-monitoring-the-

performance-of-microservices

[S35] Chris Richardson. API Gateway: Backend for Front-end.
Microservices.io, 2014. http://microservices.io/patterns/

apigateway.html.
[S36] Chris Richardson. Database per service. Microser-

vices.io, 2014. http://microservices.io/patterns/data/

database-per-service.html.
[S37] Chris Richardson. Microservice Architecture. Mi-

croservices.io, 2014. http://microservices.io/patterns/

microservices.html

[S38] Chris Richardson, Floyd Smith. Microservices - From Design
To Deployment. Nginx, 2016. https://www.nginx.com/blog

/microservices-from-design-to-deployment-ebook-nginx

[S39] Tammel Saleh. Microservices anti-patterns. Nordic APIs
Platform Summit, 2014. https://www.youtube.com/watch?v=

I56HzTKvZKc

[S40] Boris Scholl. Getting Started with Microservices, Part
1: Advantages and Considerations. Oracle’s Blog, 2017.
https://blogs.oracle.com/developers/getting-started-

with-microservices-part-one

[S41] Cassandra Shum. Pros/cons of microservices. Microservices
Day, 2017. https://www.youtube.com/watch?v=Fso7pTK7yT4

[S42] Cassandra Shum, Rachel Laycok. Microservices: Pros
and Cons. O’Reilly Software Architecture Conference, 2017.
https://www.safaribooksonline.com/library/view/oreilly-

software-architecture/9781491976142/video288556.html

[S43] Prabath Siriwadena. Securing Microservices (Part I).

FacileLogin’s blog, 2016. https://medium.facilelogin.com/

securing-microservices-with-oauth-2-0-jwt-and-xacml-

d03770a9a838

[S44] Sudhir Tonse. Effective IPC in the Cloud: The pros and
cons of microservices architecture. AWS re:Invent, 2014.
https://www.youtube.com/watch?v=CriDUYtfrjs

[S45] Tamás Török. Microservice Architecture: All the Best
Practices You Need to Know. CodingSans’ blog, 2017.
https://codingsans.com/blog/microservice-architecture-

best-practices

[S46] Marco Troisi. 8 Best Practices for Microservices Security. Tech-
Beacon, 2017. https://techbeacon.com/8-best-practices-

microservices-security.
[S47] Manisha Verma. Microservices: Benefits and Challenges.

DZone, 2017. https://dzone.com/articles/microservices-

benefits-and-challenges

[S48] Mike Wasson, Stuart Celarier. Microservices Architectural
Style. Microsoft, 2017. https://docs.microsoft.com/

en-us/azure/architecture/guide/architecture-styles/

microservices

[S49] Maira Wenzel, Cesar De La Torre, Luke Latham, Bill Wagner,
Alma Jenks, Mike Jones. Designing a microservice-oriented
application. Microsoft, 2017. https://docs.microsoft.com/

en-us/dotnet/standard/microservices-architecture/multi-

container-microservice-net-applications/microservice-

application-design

[S50] Benjamin Wootton. Microservices: Not a Free Lunch. High-
Scalability, 2014. http://highscalability.com/blog/2014/4/

8/microservices-not-a-free-lunch.html

[S51] Krzysztof Ziomek. Microservices: Pain and Gain.
Linkedin Pulse, 2016. https://www.linkedin.com/pulse/

microservices-pain-gain-krzysztof-ziomek

21


	Introduction
	Related Work
	Research Design
	Research Problem Definition and Research Questions
	Search for industrial studies
	Sample Selection & Control Factors
	Analysis & Inter-Rater Reliability Assessment
	Replication Package

	Results
	Overview of the Selected Grey Literature
	Microservices Pains
	A taxonomy for pains of microservices
	Pains in the selected industrial studies

	Microservices Gains
	A taxonomy for gains of microservices
	Gains in the selected industrial studies

	Summary
	Summary of Pains
	Summary of Gains


	Discussion
	Relation with previous surveys and the road ahead
	Observations on systematic grey literature reviews
	Threats to Validity
	Threats to external validity
	Threats to construct and internal validities
	Threats to conclusions validity


	Conclusions
	Selected Industrial Studies



