
Simulation-based matching of cloud applications

Filippo Bonchib, Antonio Brogia, Andrea Canciania, Jacopo Soldania

aDept. of Computer Science, University of Pisa, Italy
bUniv. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

Abstract

OASIS TOSCA aims at solving the problem of managing complex applications across het-
erogeneous clouds by providing a standard, vendor-agnostic language to describe them.
TOSCA permits defining a cloud application as an orchestration of typed components,
which can be instantiated by matching other TOSCA applications.

In this paper we first present two types of behaviour-aware matching of applications
(exact and plug-in) both based on a notion of simulation. We then extend the notion of
plug-in matching by relaxing the notion of simulation to permit matching an operation
with a sequence of operations. We also present a coinductive procedure to compute such
relaxed simulation, and we formally prove the termination, soundness, and completeness
of such procedure.

Keywords: service matching, cloud application, TOSCA, reuse, simulation, coinduction

1. Introduction

Cloud computing has revolutionised IT by permitting to run on-demand distributed ap-
plications at a fraction of the cost which was necessary just a few years ago [2]. However,
current cloud technologies suffer of a lack of standardization, with different providers
offering similar resources in a different manner. How to flexibly manage complex ap-
plications across heterogeneous clouds is thus one of the main research problems in the
cloud environment [10].

To tackle this issue, OASIS released the Topology and Orchestration Specification for
Cloud Applications (TOSCA [24]), a standard to describe complex cloud applications, and
to support the automation of their management. An application is specified in TOSCA
by instantiating component types (possibly by reusing matching applications [13]), by
connecting a component’s requirements to the capabilities of other components, and
by orchestrating the operations of the application components into plans defining the
management of the whole application.

Unfortunately, the current specification of TOSCA [24] does not permit to describe
the behaviour of applications’ management operations. More precisely, there is no way
to describe the order in which the operations of a component must be invoked, nor how

Email addresses: filippo.bonchi@ens-lyon.fr (Filippo Bonchi), brogi@di.unipi.it (Antonio
Brogi), canciani@di.unipi.it (Andrea Canciani), soldani@di.unipi.it (Jacopo Soldani)

Preprint submitted to Elsevier June 5, 2017

Published article: Bonchi F, Brogi A, Canciani A, Soldani J. "Simulation-based
matching of cloud applications", Science of Computer Programming, vol. 162,
pp. 110-131, 2018. DOI: 10.1016/j.scico.2017.06.001

2 BACKGROUND: TOSCA 2

those operations depend on the requirements or affect the capabilities of that component.
As a consequence, existing matchmaking and adaptation techniques (e.g., [12, 28]) are
behaviour-unaware, and this may cause problems when substituting a component by
reusing a matched application.

In this paper we first recall how TOSCA can be extended to specify the behaviour
of management operations by generalising the model we proposed in [7]. Namely, the
management protocols of a TOSCA component can be described by means of finite state
machines whose states and transitions are associated with conditions on the requirements
and capabilities of such component. The objective of those conditions is essentially to
define the consistency of the states of a component, and to constrain the executability of
its management operations to the satisfaction of its requirements.

We then constrain the existing notions of (syntactic) exact and plug-in matching in
TOSCA [12] to take into account behaviour information in management protocols. More
precisely, we define when a desired management protocol can be “simulated” [27] by
another management protocol, and we exploit such notion of simulation to constrain
exact and plug-in matchings.

We then relax the notion of simulation into that of f -simulation, where f is a func-
tion associating each transition in the desired management protocol with a sequence of
transitions in the available protocol. This permits to further relax the notion of plug-in
matching, so to match operations of a desired component with sequences of operations
of an available application. We also describe how flexibly plug-in matched applications
can be suitably adapted so to be employed in place of desired components.

Finally, we introduce a coinductive [19] algorithm (called ComputeFs) that permits
computing the function f determining an f -simulation between two management proto-
cols. We also coinductively prove that ComputeFs is terminating, sound and complete.

This paper is an extended version of [5], including (i) a more detailed background on
TOSCA, (ii) a formalisation of the coinductive algorithm ComputeFs, and (iii) the
formal assessment of termination, soundness, and completeness of ComputeFs.

The rest of the paper is organised as follows. Sect. 2 provides the necessary back-
ground on TOSCA, while Sect. 3 describes how TOSCA can be extended to specify the
behaviour of management operations. Sect. 4.1 recalls the notions of (syntactic) exact
and plug-in matching. Sect. 4.2 introduces the notion of management protocol simula-
tion, and it employs such notion to further constrain the exact and plug-in matchings.
Sect. 4.3 relaxes the notion of simulation into that of f -simulation to further relax plug-in
matching. Sect. 5 presents the algorithm to compute f -simulations and formally assess
its termination, soundness, and completeness. Finally, Sects. 6 and 7 discuss related
work and draw some conclusions, respectively.

2. Background: TOSCA

TOSCA [24] is an OASIS standard aimed at enabling the specification of portable cloud
applications and the automation of their management. To do so, TOSCA provides a
modelling language to describe the structure of a cloud application as a typed topology
graph, and its tasks as plans. More precisely, each cloud application is represented as
a service template (Fig. 1), consisting of a mandatory topology template and of optional
management plans.

2 BACKGROUND: TOSCA 3

Figure 1: A TOSCA service template.

The topology template is a typed directed graph describing the structure of the
composite cloud application. Its nodes (called node templates) model the application
components, while its edges (called relationship templates) model the relations among
those components. Node templates and relationship templates are typed by means of
node types and relationship types, respectively. A node type defines (i) the observable
properties of an application component, (ii) the possible states of its instances, (iii) its
requirements, (iv) the capabilities it offers to satisfy other components’ requirements,
and (v) its management operations. Relationship types describe the properties of re-
lationships occurring among components. Requirements, capabilities, properties and
operations externally exposed by a service template can be described in its boundary
definitions.

Plans instead permit describing the management aspects of a service template. Each
plan is a workflow orchestrating the management operations offered by the application
components to address (part of) the management of the whole cloud application.1

Example 2.1. We hereby exemplify how a Moodle application can be specified as a
TOSCA service template. MoodleApplication (Fig. 2) is composed by six components,
each represented by a node template in its topology. Moodle is the front-end of the
application and Database is its back-end. The other four components (viz., a Server, a
MySQL runtime environment, an Ubuntu virtual machine, and a Debian virtual machine)
form the software stacks needed to properly run Moodle and Database.

Requirements and capabilities of components are interconnected by relationship tem-
plates, to specify that a component is HostedOn another, or that a component ConnectsTo
another. For instance, Moodle has two requirements that must be fulfilled:

- The requirement WebAppRuntime specifies that Moodle has to be hosted on a runtime
for web applications. WebAppRuntime is fulfilled by connecting it (with a Host-
edOn relationship) to the capability WebAppRuntime of Server. This means that,
whenever the service template MoodleApplication is deployed, Moodle will be installed
and hosted on Server.

1A more detailed, self-contained introduction to TOSCA can be found in [13].

2 BACKGROUND: TOSCA 4

Figure 2: Example of TOSCA service template.

Figure 3: Example of TOSCA plan.

- The requirement DBEndpoint specifies that Moodle needs to know the actual end-
point of the back-end Database. DBEndpoint is hence fulfilled by connecting it (with
a ConnectsTo relationship) to the capability DBEndpoint of Database. This means
that, whenever the service template MoodleApplication is deployed, a connection
between Moodle and Server will be set up.

All nodes forming the topology of MoodleApplication also expose a TOSCA lifecycle
interface [25]. The lifecycle interface contains the operations to Install, Start, Stop and
Uninstall a component. In the case of Moodle and of Database, the lifecycle interface also
contains the operation to Configure them.

A lifecycle interface is also exposed on the boundary definitions of the service tem-
plate MoodleApplication. Such interface contains the operations to Install, Start, Stop, and
Uninstall the whole service template, and the actual implementation of such operations
is given by plans orchestrating the management operations of the nodes forming the
topology of MoodleApplication. For instance, the operation Install of MoodleApplication is
implemented by InstallPlan, which orchestrates the operations Install of the inner nodes as
illustrated in Fig. 3.

3 MANAGEMENT PROTOCOLS FOR CLOUD APPLICATIONS 5

3. Management protocols for cloud applications

While a TOSCA node type can be described by means of its states, requirements, capa-
bilities, properties, and management operations, there is currently no way to specify how
management operations affect states, how operations or states depend on requirements,
or which capabilities are concretely provided in a certain state. The objective of this
section is precisely to show how we proposed (in [7]) to extend TOSCA to specify the
behaviour of the management operations of a node type, as well as their relations with
its states, requirements, and capabilities.

Essentially, we want to describe whether and how the management operations of a
node type N depend on (i) other operations of the same node and/or on (ii) operations
of other nodes providing the capabilities that satisfy the requirements of N :

(i) The first kind of dependencies can be easily described by specifying the relationship
between states and management operations of N . More precisely, to describe the
order with which the operations of N can be executed, we introduce a transition
relation τ specifying whether an operation o can be executed in a state s, and which
state is reached by executing o in s.

(ii) The second kind of dependencies can be described by associating transitions and
states with (possibly empty) sets of requirements to indicate that the corresponding
capabilities are assumed to be provided. More precisely, the requirements associated
with a transition t specify which are the capabilities that must be offered by other
nodes to allow the execution of t. The requirements associated with a state of a
node type N specify which are the capabilities that must (continue to) be offered
by other nodes in order for N to (continue to) work properly.

To complete the description, we permit associating each state s of a node type N with the
capabilities provided by N in s, and to explicitly specify which capabilities are maintained
during a transition.2

Definition 3.1 (Management protocol). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node
type, where SN , RN , CN , and ON are the sets of its states, requirements, capabilities,
and management operations, and MN = 〈sN , ρN , χN , τN 〉 is the management protocol
of N , where:

• sN ∈ SN is the initial state,

• ρN : SN → 2RN is a function indicating, for each state s ∈ SN , which conditions
on requirements must hold,

• χN : SN → 2CN is a function indicating which capabilities of N are concretely
offered in a state s ∈ SN , and

2The latter is a proper extension that generalises our initial definition of management protocols [7, 9],
where we were assuming that all capabilities were maintained during a transition. The extension will be
justified by Def. 4.7, which shows why transitions need to predicate on capabilities.

3 MANAGEMENT PROTOCOLS FOR CLOUD APPLICATIONS 6

• τN ⊆ SN × 2RN × 2CN × ON × SN is a set of quintuples modelling the transition
relation (i.e., 〈s,H,G, o, s′〉 ∈ τN denotes that in state s, and if condition H holds,
o is executable and leads to state s′ — by maintaining the capabilities in G during
the transition).

According to Def. 3.1, management protocols allow for operations that have non-
deterministic effects (namely, a state may have two outgoing transitions corresponding to
the same operation and leading to different states). This form of non-determinism is not
acceptable when managing TOSCA applications [13]. We will thus focus on deterministic
management protocols (i.e., protocols ensuring deterministic effects when performing an
operation in a state).

Definition 3.2 (Deterministic management protocol). Let MN = 〈sN , ρN , χN , τN 〉 be
the management protocol of a node type N . MN is deterministic iff

∀〈s1, H1, G1, o1, s
′
1〉, 〈s2, H2, G2, o2,s

′
2〉 ∈ τN :

(
s1 = s2 ∧ o1 = o2

)
⇒ s′1 = s′2.

Furthermore, for each transition, the conditions on requirements and capabilities
should be coherent with the starting and target states. Namely, the requirements assumed
to hold in the starting state, as well as those assumed to hold in the target state, should
also be assumed to hold during the transition, to avoid inconsistencies. Analogously, the
capabilities that can be maintained during a transition are (at most) those offered by
both its starting and target states.

Definition 3.3 (Well-formed management protocol). Let MN = 〈sN , ρN , χN , τN 〉 be
the management protocol of a node type N . MN is well-formed iff

∀〈s,H,G,o, s′〉 ∈ τN : ρN (s) ∪ ρN (s′) ⊆ H ∧ G ⊆ χN (s) ∩ χN (s′).

In the following, we consider well-formed, deterministic management protocols.

Finally, we recall (from [7]) the intensional operational semantics of the management
protocol of a single component (i.e., a TOSCA node type), which models all possi-
ble sequences of management operations that can be performed on a component if the
conditions on the needed requirements are satisfied by the environment. Formally, the
intensional semantics of the management protocol of a node type N can be defined by a
labelled transition system over configurations that are the states of N .

Definition 3.4 (Intensional semantics of a management protocol). Let N = 〈SN , RN ,
CN , ON ,MN 〉 be a node type. The intensional semantics of the management protocol
MN of N is denoted by a labelled transition system whose set of configurations is SN
and whose transition relation is defined by the following inference rule:

N = 〈SN , RN , CN , ON ,MN 〉 ∧ MN = 〈sN , ρN , χN , τN 〉 ∧ 〈s,H,G, o, s′〉 ∈ τN

s
〈H,G,o〉−−−−−→N s′

Intuitively, a transition s
〈H,G,o〉−−−−−→N s′ denotes that operation o can be executed on

N when N is in state s, and under the hypotheses given by condition H, making N
evolve into state s′. During the transition, it is guaranteed that N continues to offer the
capabilities in G.

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 7

4. Behaviour-aware matching of cloud applications

4.1. Syntactic matching
A TOSCA node type N can be instantiated by substituting it with a service template
S if the capabilities, requirements, and operations exposed by S are exactly the same as
those of N [24]. In [12], we formalised this with the notion of (syntactic) exact matching.3

Definition 4.1 (Syntactic exact matching). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node
type, and let S = 〈SS , RS , CS , OS ,MS〉 be a service template. S (syntactically) exactly
matches N (S ≡ N) iff

RS = RN ∧ CS = CN ∧ OS = ON .

The notion of (syntactic) plug-in matching (5) relaxes that of exact matching by per-
mitting to substitute a node type N with a service template S that, intuitively speaking,
“requires less” and “offers more” than N . More precisely, S plug-in matches N when all
requirements of S are exposed by N , and when all capabilities and operations of N are
offered by S.

Definition 4.2 (Syntactic plug-in matching). Let N = 〈SN , RN , CN , ON ,MN 〉 be a
node type, and let S = 〈SS , RS , CS , OS ,MS〉 be a service template. S (syntactically)
plug-in matches N (S 5 N) iff

RS ⊆ RN ∧ CS ⊇ CN ∧ OS ⊇ ON .

In [12], we also showed how a plug-in matched service template can be adapted so to
exactly match a desired node type.

Example 4.1. Consider the Server node type and the Apache and Tomcat service tem-
plates in Fig. 4. For simplicity, we assume that requirements, capabilities, and operations
having the same name satisfy the syntactical matching conditions given in [12].

It is easy to see that the Apache service template syntactically exactly matches Server
(viz., Apache ≡ Server), while the same does not hold for the Tomcat service template.
Since Tomcat and Server expose the same requirements, and since Tomcat exposes “more”
capabilities and operations than Server, we have that Tomcat plug-in matches Server
(viz., Tomcat 5 Server).

The Tomcat service template can hence be adapted to exactly match the Server node
type [12]. We define a new service template (Fig. 5) having Tomcat as its only node,
and exposing (via its boundary definitions) the same requirements, capabilities, and
management operations as the target Server node type.

The exact and plug-in matching notions [12] are purely syntactical, and do not take
into account the behavioural information of management protocols. In the next sections,
we first constrain them by including conditions on such behaviour information. We then
provide a more flexible notion of behaviour-aware matching, extending the behaviour-
aware plug-in matching in order to identify larger sets of service templates that can be
adapted so to exactly match a node type.

3We model node types and service templates with the same structure, since we abstract from a service
template’s topology by focusing on its boundaries. For the sake of simplicity, we also assume service
templates to be valid [11], and we abstract from purely syntactical matching constraints (e.g., name
equivalence, type compatibility) and from some TOSCA concepts (e.g., properties, interfaces) that are
not necessary to understand this paper. A detailed definition of TOSCA matching can be found in [12].

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 8

Figure 4: Example of node type and service templates.

Figure 5: Example of adaptation of a plug-in matched service template.

4.2. Simulation-based matching

Consider a node type N = 〈SN , RN , CN , ON ,MN 〉, where SN , RN , CN , and ON are
respectively the sets of its states, requirements, capabilities, and management operations,
and where MN = 〈sN , ρN , χN , τN 〉 is the management protocol of N . Consider also
a service template S = 〈SS , RS , CS , OS ,MS〉, with MS = 〈sS , ρS , χS , τS〉. In order
to constrain the notions of exact and plug-in matching, we formally define when the
management protocol MS of S can simulate [27] (the management behaviour defined
by) the management protocol MN of N .

Intuitively speaking, MN is simulated by MS if and only if the initial state of MN

is simulated by the initial state of MS . A state sN ∈ SN is simulated by a state
sS ∈ SS if and only if (a) the requirements needed by sN include all those needed by sS ,
(b) the capabilities offered by sN are included in those offered by sS , and (c) for each
transition leading from sN to s′N , there is a “compatible” transition starting from sS
(i.e., a transition performing the same operation o, not needing additional requirements,
providing at least the same capabilities, and leading to a state s′S that simulates s′N).

Definition 4.3 (Simulation of management protocols). Let N = 〈SN , RN , CN , ON ,MN 〉
be a node type, with MN = 〈sN , ρN , χN , τN 〉. Let also S = 〈SS , RS , CS , OS ,MS〉 be a
service template, with MS = 〈sS , ρS , χS , τS〉.

A state sN ∈ SN is simulated by sS ∈ SS (sN v sS) iff

(a) ρN (sN) ⊇ ρS(sS),

(b) χN (sN) ⊆ χS(sS), and

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 9

(c) sN
〈HN ,GN ,o〉−−−−−−−→N s′N

implies

∃sS
〈HS ,GS ,o〉−−−−−−−→S s

′
S : HN ⊇ HS ∧GN ⊆ GS ∧ s′N v s′S.

A management protocol MN is simulated by a management protocol MS (MN vMS)
iff sN v sS.

The notion of simulation permits us to constrain that of exact matching (Def. 4.1).
Namely, to check whether a service template S exactly matches a node type N , we now
check whether S syntactically exactly matches N , and whether the management protocol
of S simulates that of N .

Definition 4.4 (Exact matching). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node type, and
let S = 〈SS , RS , CS , OS ,MS〉 be a service template. S exactly matches N (S ≡b N) iff

S ≡ N ∧ MN vMS .

Analogously, to check whether a service template S plug-in matches a node type N , we
check whether S syntactically plug-in matches N , and whether the management protocol
of S simulates that of N .

Definition 4.5 (Plug-in matching). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node type,
and let S = 〈SS , RS , CS , OS ,MS〉 be a service template. S plug-in matches N (S 5b N)
iff

S 5 N ∧ MN vMS .

Example 4.2. Example 4.1 showed that the Tomcat service template syntactically plug-
in matches the Server node type. Consider now the management protocols in Fig. 6,
where MServer is the management protocol for Server, while MTomcat and M′Tomcat are
two (alternative) management protocols for Tomcat.

It is easy to see that MServer v MTomcat, since Unavailable v NotInstalled. It follows
that (with MTomcat) Tomcat plug-in matches Server (i.e., Tomcat 5b Server), and that
Tomcat can still be adapted as shown in Fig. 5 to exactly match Server. The adaptation
now also ensures that the operations of the adapted service template have the same
behaviour as those of the desired node type.

The same does not hold if the management protocol of Tomcat is M′Tomcat. For in-
stance, by performing Install in their initial states, M′Tomcat and MServer respectively
reach the states Installed and Stopped, and Installed 6v Stopped. This is because there is
no transition starting from Installed that corresponds to the operation Start of Server.

Instead, if the operation Install of Server was corresponding to the sequencing of the
operations Install and Configure of Tomcat, the aforementioned problem would have not
been raised. Tomcat would have indeed reached its state Configured, where it can fire the
operation Start. This means that a less strict definition of operation matching should
allow Tomcat to match Server (with M′Tomcat as management protocol).

4.3. Flexible simulation-based matching

We hereby extend the notion of plug-in matching to permit identifying larger sets of
service templates that can be adapted to exactly match a desired node type N =

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 10

MServer

MTomcat

M′Tomcat

Figure 6: Example of management protocols.

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 11

〈SN , RN , CN , ON ,MN 〉. More precisely, we relax the definition of plug-in matching
so that, given a service template S = 〈SS , RS , CS , OS ,MS〉, we permit matching (and
substituting) operations in ON with sequences of operations in OS , based upon their
effects on states, requirements and capabilities.

We first relax the notion of simulation between management protocols (Def. 4.3), by
allowing to simulate each transition of a target management protocolMN with sequences
of transitions of an available management protocol MS . To do so, we first extend the
intensional semantics of MS , by adding the transitions which permit to remain in the
same state by performing an empty sequence ε of operations (without changing the
conditions on requirements and capabilities), and which permit moving from a state to
another by performing non-empty sequences of operations. While for singleton sequences
the rule is trivial, for sequences of at least two operations we need the following rule:
If w1 permits transiting from state s to state s′′ by assuming the requirements in H1

and providing the capabilities in G1, and if w2 permits transiting from state s′′ to state
s′ by assuming the requirements in H2 and providing the capabilities in G2, then w1w2

permits transiting from s to s′ by assuming H1 ∪H2 and by providing G1 ∩G2.

Definition 4.6 (n-step intensional semantics). Let S = 〈SS , RS , CS , OS ,MS〉 be a ser-
vice template. The n-step intensional semantics of the management protocol MS of S
is modelled by a labelled transition system whose set of configurations is SS and whose
transition relation is defined by the following inference rules:

−

s
〈ρS(s),χS(s),ε〉
=========⇒S s

s
〈H,G,o〉−−−−−→S s

′

s
〈H,G,o〉
=====⇒S s

′

s
〈H1,G1,w1〉
=======⇒S s

′′ ∧ s′′
〈H2,G2,w2〉
=======⇒S s

′

s
〈H1∪H2,G1∩G2,w1w2〉
==============⇒S s

′

Remark 4.1. The transition system ⇒S (from Def. 4.6) effectively performs the reflexive
and transitive closure of the transition system →S (from Def. 3.4). One can readily
check that whenever→S is well-formed also⇒S is well-formed. This ensures that all the

intermediates states that are reached during the execution of a transition s
〈H,G,w〉
=====⇒S s

′

offer at least capabilities G and require at most requirements H. This meets the intuition
behind the label G introduced in Sect. 3: G are all the capabilities that are maintained
available during a transition.

According to Def. 4.6, the transition system⇒S generates infinite branching whenever
the corresponding protocol features some loops. In order to obtain a finitary description
of it, we restrict to consider only minimal sequences of operations.

Definition 4.7 (Minimal n-step intensional semantics). Let S = 〈SS , RS , CS , OS ,MS〉
be a service template. The minimal n-step intensional semantics of the management
protocol MS of S is modelled by a labelled transition system whose set of configurations
is SS and whose transition relation is defined by the following inference rule:

s
〈H,G,w〉
=====⇒S s

′ ∧ @H1 ⊆ H,G1 ⊇ G,w1w2 = w,w2 6= ε : s
〈H1,G1,w1〉
=======⇒S s

′

s •〈H,G,w〉=====⇒S s
′

Remark 4.2. While the transition relation⇒S is in general infinite, •⇒S is always finite.
This is because the constraint @ prevents loops. One can indeed readily check that any

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 12

sequence w of transitions that returns to the same state is replaced with a ε transition
(since ε is a prefix of w, and since a ε transition has more relaxed requirements and
preserves more capabilities than a sequence w of transitions4).

The transition system •⇒S is also computable, as the hypotheses only involve oper-
ation sequences that are strictly shorter. Hence, the transition system •⇒S can be built
with an algorithm enumerating the operation sequences ordered by increasing length up
to a maximum length equal to the number of states in the management protocol of S.
Please recall that •⇒S avoids loops, and this allows us to stop enumerating sequences
longer than the number of states in the management protocol of S.

We now relax the notion of simulation (Def. 4.3) into that of f -simulation, where
f : SN × SS × ON → O∗S is a function associating each transition in the target man-
agement protocol MN with a (possibly empty) sequence of transitions in the available
management protocol MS .

Intuitively speaking, MN can be f -simulated by MS if and only if the initial state
of MN can be f -simulated by the initial state of MS . A state sN ∈ SN is in turn
f -simulated by a state sS ∈ SS if and only if (a) the requirements needed by sN contain
all those needed by sS , (b) the capabilities offered by sN are contained in those offered
by sS , and (c) for each transition starting from sN , there is a transition in •⇒S starting
from sS , not needing additional requirements, providing at least the same capabilities,
and leading to a state s′S that in turn f -simulates s′N .

Definition 4.8 (f -simulation of management protocols). Let N = 〈SN , RN , CN , ON ,
MN 〉 be a node type, with MN = 〈sN , ρN , χN , τN 〉. Let also S = 〈SS , RS , CS , OS ,MS〉
be a service template, with MS = 〈sS , ρS , χS , τS〉.

A state sN ∈ SN is f -simulated by a state sS ∈ SS (sN vf sS) iff the following conditions
hold.

(a) ρN (sN) ⊇ ρS(sS),

(b) χN (sN) ⊆ χS(sS), and

(c) sN
〈HN ,GN ,o〉−−−−−−−→N s′N

implies

∃sS •
〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S : HN ⊇ HS ∧GN ⊆ GS ∧ s′N v s′S.

A management protocol MN is f -simulated by a management protocol MS (MN vf
MS) iff sN vf sS.

Remark 4.3. A similar notion could be defined by replacing the transition system •⇒S

with the transition system⇒S (Def. 4.6). This would put weaker constraints on f , as⇒S

is much larger than •⇒S . Nonetheless any f satisfying the weaker simulation constraints
would have an associated f ′ fulfilling the stricter ones. We have selected •⇒S to have a
decidable f -simulation, since the transitions system •⇒S is finite and computable (see
Remark 4.2).

4The latter condition directly follows from the well-formedness of management protocols (Def. 3.3)
and from the rules defining ⇒S (Def. 4.6).

4 BEHAVIOUR-AWARE MATCHING OF CLOUD APPLICATIONS 13

It is easy to see that the notion of f -simulation supports a more flexible form of
matching than simulation. It indeed permits matching the operations of the target node
type N with (different) sequences of operations of the available service template S.

Definition 4.9 (Flexible plug-in matching). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node
type, and let S = 〈SS , RS , CS , OS ,MS〉 be a service template. S flexibly plug-in matches
N (S .b N) iff

RS ⊆ RN ∧ CS ⊇ CN ∧ MN vf MS .

Property 4.1 (Relation between 5b and .b). If an available service template S plug-in
matches a node type N , then S also flexibly plug-in matches N , i.e. 5b ⊆ .b.

Proof. Consider a service template S and a node type N , and suppose that

S 5b N.

By definition of 5b (Def. 4.5), we have that

S 5 N ∧ MN vMS .

According to definition of 5b (Def. 4.2), the above means that

RS ⊆ RN ∧ CS ⊇ CN ∧ OS ⊇ ON ∧ MN vMS ,

which obviously implies that

RS ⊆ RN ∧ CS ⊇ CN ∧ MN vMS .

Let us now denote with Id the identity function mapping each operation o on itself. By
Defs. 4.3 and 4.8, we have that v≡vId, which in turns means that

RS ⊆ RN ∧ CS ⊇ CN ∧ MN vIdMS .

According to Def. 4.9, the above means that

S .b N.

It is worth noting that, while the adaptation technique for (syntactically) plug-in
matched service templates [12] can be directly applied to requirements and capabilities,
management operations need now to be adapted by taking into account sequences. We
hence map the operations exposed on the boundaries of the adapted service template onto
plans composing the operation of the flexibly plug-in matched service template. More
precisely, since each operation to be matched can be associated with a different sequence
according to f (and depending on the states of the target node type and matched service
template), each operation exposed by the adapted service template is now associated
with a conditional workflow encoding all the mappings given by f .

5 COMPUTING AN F -SIMULATION 14

Figure 7: Example of adaptation of a flexibly plug-in matched service template.

Example 4.3. Consider again the Server node type and the Tomcat service template
in Fig. 4. One can now readily check that Tomcat flexibly plug-in matches Server
(i.e., Server .b Tomcat), even if we consider the management protocols MServer and
M′Tomcat in Fig. 6. This is because MServer is f -simulated by M′Tomcat, where f is the
identity function, except that for mapping the operation Install of Server with the se-
quencing of the operations Install and Configure of Tomcat.

It follows that we can adapt Tomcat as shown in Fig. 7. Namely, we create a new service
template containing Tomcat as its only node, and exposing on its boundary definitions the
features of the node type to be matched (i.e., Server). We then map requirements and
capabilities as shown in [12]. Finally, we implement each operation of the adapted service
template with workflow plans built according to the mappings given by f . Namely, the
Install operation is implemented by a sequential plan which invokes the operations Install
and Configure of Tomcat. Each other operation is implemented by plans containing a
single invocation to the homonym operation of Tomcat (e.g., Start is implemented by a
plan which only invokes the Start operation of Tomcat).

It is worth noting that Example 4.3 shows a static translation: Each operation ex-
posed on the boundaries of the adapted service template is implemented by a plan that
is independent from the current states of the target node type and of the matched ser-
vice template. According to the definition of vf (Def. 4.8) this is not always the case,
since f may depend on their current states. In the next section we present an algorithm
which computes all possible f , from which it is trivial to extract a static translation (if
it exists). If no such translation exists, the adapter would need some additional logic,
namely it should include some conditional statements to track the state of the node type
and/or of the service template.

5. Computing an f-simulation

We hereby present an algorithm to compute f -simulations (Sect. 5.1), and we formally
assess its termination, soundness, and completeness (Sect. 5.2).

5.1. The algorithm ComputeFs

Consider a service template S = 〈SS , RS , CS , OS ,MS〉 and a node type N = 〈SN , RN ,
CN , ON ,MS〉, where MS = 〈sS , ρS , χS , τS〉 and MN = 〈sN , ρN , χN , τN 〉 are the cor-

5 COMPUTING AN F -SIMULATION 15

responding management protocols. According to Def. 4.9, to check whether S flexibly
plug-in matches N we need to check whether MS f -simulates MN (i.e., MS vf MN).

Let us denote with WS ⊆ O∗S set of all minimal operation sequences in MS (see
Def. 4.7). We now present an algorithm (called ComputeFs — Algorithm 1) capable of
finding all functions f : SN×SS×ON →WS such thatMS vf MN . Intuitively speaking,
the algorithm starts by permitting to map each operation in ON with any sequence of
operations in WS , and iteratively refines the mapping by removing the mappings leading
to states that do not f -simulate (for any f). This process continues until the mapping
cannot be refined any more.

More precisely, ComputeFs employs a l ×m × n matrix F , where l is the number
of states in SN (i.e., l = |SN |), m is the number of states in SS (i.e., m = |SS |), and n
is the number of operations in ON (i.e., n = |ON |). Each entry F [i, j, o] stores the set of
all words w ∈WS such that, for some f , mapping (i, j, o) into w would potentially allow
j to f -simulate i (i.e., i vf j). Intuitively, the matrix F represents an element in the
lattice of all functions SN × SS × ON → 2WS , and the algorithm consists of a greatest
fixpoint computation on such lattice (i.e., F starts from the top of the lattice, and each
refinement makes it become a lower element — until it cannot be lowered any more).

Initially, there is no information about f -simulation, and ComputeFs can only check
whether two states i ∈ SN and j ∈ SS are compatible in terms of requirements and
capabilities (i.e., whether ρN (i) ⊇ ρS(j) ∧ χN (i) ⊆ χS(j) — line 3). If this is the case,
then j is a candidate to simulate i, and ComputeFs maps each operation o ∈ ON with
any operation sequence in WS (i.e., F [i, j, o] ← WS — line 4). Otherwise, there is no
way to simulate i with j, and thus there is no way to map the operations in ON onto
sequences in WS (lines 5-6).

Remark 5.1. ComputeFs initialises the matrix F as follows:

F [i, j, o] =

{
WS if ρN (i) ⊇ ρS(j) ∧ χN (i) ⊆ χS(j)
∅ otherwise

(where i ∈ SN , j ∈ SS , and o ∈ ON).

F is then iteratively refined by removing all the mappings that lead to states that
do not f -simulate (lines 7-14). At each step, after storing the previously computed F in

F̂ (line 8), ComputeFs computes a new value W to be assigned to F [i, j, o], for each
i ∈ SN , j ∈ SS , and o ∈ ON . W is initially set to ∅ (line 10). Then, for each w assigned

to F [i, j, o] at the previous refinement step (i.e., for each w ∈ F̂ [i, j, o]), ComputeFs
checks whether o and w lead to states that were candidates for f -simulation at the
previous refinement step, i.e. if i can go in i′ with o, then j can go in j′ with w, and j′

is a candidate to simulate i′ (i.e., ∀o′ ∈ ON .F̂ [i′, j′, o′] 6= ∅)5. If this is the case, w is
added to W (line 12). The resulting W is then assigned to F [i, j, o] (line 13).

Remark 5.2. One can readily check that, at each refinement step, F [i, j, o] is obtained

by restricting F̂ [i, j, o] (i.e., the value of F [i, j, o] computed at the previous refinement
step) as follows:

F [i, j, o] = {w ∈ F̂ [i, j, o] | ∀i 〈HN ,GN ,o〉−−−−−−−→N i′.∃j •〈HS ,GS ,w〉
=======⇒S j

′ :

HN ⊇ HS ∧GN ⊆ GS ∧ ∀o′ ∈ ON .F̂ [i′, j′, o′] 6= ∅}

5Such check is actually implemented by the function LeadsToCandidate (lines 17-31).

5 COMPUTING AN F -SIMULATION 16

Algorithm 1 ComputeFs. Computing all functions f determining a f -simulation
between the management protocols of a node type N and of a service template S.

1: function ComputeFs(S,N)
2: for all i ∈ SS , j ∈ SN do
3: if ρN (i) ⊇ ρS(j) ∧ χN (i) ⊆ χS(j) then
4: for all o ∈ ON do F [i, j, o]←WS

5: else
6: for all o ∈ ON do F [i, j, o]← ∅
7: repeat
8: F̂ ← F
9: for all i ∈ SS , j ∈ SN , o ∈ ON do

10: W ← ∅
11: for all w ∈ F̂ [i, j, o] do

12: if LeadsToCandidate(w, F̂ , S,N) then W ←W ∪ {w}
13: F [i, j, o]←W

14: until F 6= F̂
15: return F
16:

17: function LeadsToCandidate(w,F, S,N)

18: for all i
〈HN ,GN ,o〉−−−−−−−→N i′ do

19: exists← false

20: for all j •〈HS ,GS ,w〉
=======⇒S j

′ do
21: if HN ⊇ HS ∧GN ⊆ GS then
22: isCandidate← true
23: for all o′ ∈ ON do
24: if F [i′, j′, o′] = ∅ then
25: isCandidate← false
26: break
27: if isCandidate then
28: exists← true
29: break
30: if not(exists) then return false

31: return true

(where i ∈ SN , j ∈ SS , and o ∈ ON).

The iterative refinement process stops when the matrix F cannot be refined any more
(i.e., when F = F̂ — line 14). This is guaranteed to happen, because at every step each

entry F [i, j, o] either shrinks or stays the same. By definition, when F = F̂ , we reached
the maximum fixpoint F . The latter is the output returned by ComputeFs (line 15).
Given such F :

• If there is at least one operation in ON that cannot be mapped in the starting
states (i.e., ∃o ∈ ON .F [sN , sS , o] = ∅), then there is no function f such that the
starting states f -simulate (i.e., sS 6vf sN). This in turn implies that MS does not

5 COMPUTING AN F -SIMULATION 17

f -simulate MN (i.e., MS 6vf MN).

• Otherwise, we can extract one of the functions f (such that MS vf MN) by
simply selecting one of the possible mappings for each operation o ∈ ON and for
each pair of states (i, j) ∈ SN × SS .

Example 5.1. Consider again the Tomcat service template and the Server node type,
whose management protocols M′Tomcat and MServer are in Fig. 6. We now show that
ComputeFs permits determining a function f such that M′Tomcat vf MServer.

6

ComputeFs initially builds the matrix in Fig. 8 by checking whether the states of
M′Tomcat andMServer are compatible in terms of requirements and capabilities. If a state
of M′Tomcat is compatible with a state of MServer (such as in the case of NotInstalled and
Unavailable), the corresponding cell is filled by mapping each operation of Server to the
set of all minimal operation sequences in Tomcat (denoted by WTomcat). Otherwise, the
cell is left empty (such as in the case of NotInstalled and Working).

The matrix in Fig. 8 is then iteratively refined by removing all operation mappings
that lead to states that do not f -simulate. The matrix obtained after the first refinement
step is displayed in Fig. 9. Consider, for instance, the initially available mappings for the
operation Install of Server when Tomcat is NotInstalled and Server is Unavailable (Fig. 8).
All such mappings (but those to empty sequence ε, and to the sequences Install and Install
·Configure) lead to states that are not candidate to f -simulate (viz., to states whose
corresponding cells are empty in the matrix in Fig. 8). The only mappings maintained
in the matrix in Fig. 9 are hence ε, Install and Install·Configure.

By applying a second refinement step to the matrix in Fig. 9, all mappings remain
unchanged, meaning that we already reached the greatest fixpoint. As all operations do
have mappings in the starting states NotInstalled and Unavailable, we can conclude that
there exist a set of functions f : SServer × STomcat × OServer → O∗Tomcat such that

M′Tomcat vf MServer. We can hence pick one of such functions by selecting one mapping
for each operation in each pair of states. For instance, we can pick a function f defined
as follows:

f(, , o) =

Install · Configure o = Install
Start o = Start
Stop o = Stop
Uninstall o = Uninstall

5.2. Properties of ComputeFs

We hereby assess termination, soundness and completeness of the algorithm ComputeFs
(Algorithm 1).

5.2.1. Termination of ComputeFs

The termination of ComputeFs follows trivially from its rules for initialising and refining
the matrix F (which are recapped in Remark 5.1 and 5.2, respectively).

6An example showing that ComputeFs can also be exploited to check that two management protocols
do not f -simulate is in Appendix A

5 COMPUTING AN F -SIMULATION 18

Unavailable Stopped Working

NotInstalled

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Installed

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Configured

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Running

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Paused

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Tomcat Se
rv
e
r

Figure 8: Initial matrix computed by ComputeFs when determining a function f such that M′
Tomcat vf

MServer. White cells correspond to states that are candidate to f -simulate, grey cells correspond to
states that do not f -simulate.

Unavailable Stopped Working

NotInstalled

Install {ε,Install,Install·Config}
Start WTomcat

Stop WTomcat

UninstallWTomcat

Install WTomcat

Start {Install·Config·Start,
Install·Config·Start·Pause}

Stop WTomcat

Uninstall {ε,Install,Install·Config}

Installed

Install {ε,Config,Config·Uninst}
Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start {Config·Start,
Config·Start·Pause}

Stop WTomcat

Uninstall {ε,Config,
Config·Unistall}

Configured

Install {ε,Uninst,Uninst·Install}
Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start {Start,Start·Pause}
Stop WTomcat

Uninstall {ε,Uninstall,
Uninstall·Pause}

Running

InstallWTomcat

Start WTomcat

Stop {Stop}
UninstallWTomcat

Paused

InstallWTomcat

Start WTomcat

Stop {Start·Stop}
UninstallWTomcat

Tomcat Se
rv
e
r

Figure 9: Refinement of the matrix in Fig. 8 obtained by removing all mappings that lead to states that
are not candidate to f -simulate. Refined mappings are thicker, unchanged mappings are lighter.

5 COMPUTING AN F -SIMULATION 19

Proposition 5.1 (Termination of ComputeFs). ComputeFs always terminates.

Proof. The algorithm consists in an iterative refinement process, which stops whenever
the matrix F cannot be refined any more, i.e. F = F̂ . This is guaranteed to happen,
because of the following facts:

• All entries of the matrix F are initialised with finite sets (viz., either they contain
the set WS of all minimal operation sequences, or they contain the empty set —
Remark 5.1).

• At every step, each entry F [i, j, o] either shrinks or stays the same (Remark 5.2),
and F [i, j, o] is lower-bounded by ∅.

5.2.2. Soundness and completeness of ComputeFs

To illustrate soundness and completeness of ComputeFs, we first need to set the stage
with some preliminary notions. Namely, we need to introduce the operator Ψf (Def. 5.1),
and to illustrate that the relation of f -simulation is a post-fixpoint of such operator
(Lemma 5.1). We also need to introduce the endomap Φ (Def. 5.2), and to show that
ComputeFs actually computes the greatest fixpoint of such endomap.

Consider a service template S = 〈SS , RS , CS , OS ,MS〉 and a node type N = 〈SN , RN ,
CN , ON ,MN 〉, whose management protocols are MS = 〈sS , ρS , χS , τS〉 and MN =
〈sN , ρN , χN , τN 〉, respectively. The notion of f -simulation is defined (in Def. 4.8) as a
relation such that, for all pairs (sN , sS) ∈ SN × SS , satisfies the following constraint:

sN vf sS :=ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

s′N v s′S).

The same relation can be defined as a post-fixpoint of the operator Ψf , which is defined
as follows.

Definition 5.1 (Operator Ψf). Let S = 〈SS , RS , CS , OS ,MS〉 be a service template
(with MS = 〈sS , ρS , χS , τS〉), and let N = 〈SN , RN , CN , ON ,MN 〉 be a node type (with

5 COMPUTING AN F -SIMULATION 20

MN = 〈sN , ρN , χN , τN 〉). The operator Ψf is defined as follows:

Ψf (R) := {(sN , sS) ∈R | ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

(s′N , s
′
S) ∈ R)}

Lemma 5.1. The relation of f -simulation (viz., vf) is a post-fixpoint of the operator
Ψf . Namely:

vf= Ψf (vf).

Proof. The thesis directly follows from the definitions of vf and of Ψf (Def. 4.8 and
Def. 5.1, respectively).

In Sect. 5.1, we mentioned that the algorithm essentially consists of a greatest fixpoint
computation on the lattices of functions F : SN ×SS ×ON → 2WS . We hereby formalise
this intuition by introducing a monotone endomap Φ on the aforementioned lattice of
functions F : SN×SS×ON → 2WS , and by showing that ComputeFs actually computes
the greatest fixpoint of Φ.

Definition 5.2 (Endomap Φ). Let S = 〈SS , RS , CS , OS ,MS〉 be a service template (with
MS = 〈sS , ρS , χS , τS〉), and let N = 〈SN , RN , CN , ON ,MN 〉 be a node type (withMN =
〈sN , ρN , χN , τN 〉). Let also WS ⊆ O∗S be the set of all minimal operation sequences inMS

(Def. 4.7). We define the endomap Φ on the lattice of functions F : SN×SS×ON → 2WS

as follows:

Φ(F)(sN , sS , o) := {w ∈F (sN , sS , o) |
ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈HS ,GS ,w〉
=======⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

∀o′, F (s′N , s
′
S , o
′) 6= ∅)}

Lemma 5.2. The algorithm presented in Sect. 5.1 consists in computing of the greatest
fixpoint of the endomap Φ.

Proof. Consider the rules for initialising and updating the matrix F , which are formalised
in Remark 5.1 and Remark 5.2. By definition of Φ:

5 COMPUTING AN F -SIMULATION 21

• The initial matrix F is just Φ(>), where > is the greatest element of the lattice of
functions F : SN × SS × ON → 2WS (i.e., a function assigning to any triple i, j, o
the whole set Ws), and

• Each refinement step computes a matrix F such that F = Φ(F̂).

The above, along with the fact that ComputeFs stops whenever F = F̂ (and that
ComputeFs eventually terminates — Proposition 5.1), proves the thesis.

We now have all the notions that are needed to coinductively [19] prove that Com-
puteFs (Algorithm 1) is sound and complete.

Proposition 5.2 (Soundness and Completeness of ComputeFs). ComputeFs is sound
and complete.

Proof. By Lemma 5.1 and Lemma 5.2, we respectively have that:

• The relation vf is a post-fixpoint of the operator Ψf .

• ComputeFs consists in computing of the greatest fixpoint of the endomap Φ.

Given the above, to prove soundness and completeness of ComputeFs we can focus on
Φ and Ψf , by showing how they are related. More precisely, we can exploit the operator
Ψf to prove the following facts:

(a) If there is an f for which the states of a node type N are f -simulated by those of a
service template S, then there is a non-empty fixpoint for the endomap Φ built on
the corresponding lattice, and

(b) if Φ has a non-empty fixpoint, then it is always possible to extract from it a function
f such that the states of N are f -simulated by those of S.

The above listed conditions (a) and (b) are proved by the following Lemmas 5.3 and 5.4,
respectively.

Lemma 5.3. Let S = 〈SS , RS , CS , OS ,MS〉, and let N = 〈SN , RN , CN , ON ,MN 〉. Let
also WS ⊆ O∗S be the set of all minimal operation sequences in MS (Def. 4.7), and Φ
be an endomap on the lattice of functions F : SN × SS × ON → 2WS built as shown in
Def. 5.2.

Consider a state sS ∈ SS and a state sN ∈ SN . If there exists a function f for which
sN vf sS, then there is a non-empty fixpoint for the endomap Φ on F . In formulas,
∀sN ∈ SN , sS ∈ SS , o ∈ ON

Φ(Ff)(sN , sS , o) = Ff (sN , sS , o)

where Ff (sN , sS , o) = {f(sN , sS , o) | sN vf sS}.

Proof. The definition of Ff (sN , sS , o) naturally partitions the proof in two cases, i.e. (a)
Ff (sN , sS , o) = ∅, and (b) Ff (sN , sS , o) = {f(sN , sS , o)} 6= ∅.

5 COMPUTING AN F -SIMULATION 22

(a) Assume that Ff (sN , sS , o) = ∅. By definition of Φ

Φ(Ff)(sN , sS , o) ⊆ Ff (sN , sS , o).

Since Ff (sN , sS , o) = ∅
Φ(Ff)(sN , sS , o) ⊆ ∅,

which trivially implies that

Φ(Ff)(sN , sS , o) = ∅.

From the above, and since Ff (sN , sS , o) = ∅, we have that ∀o ∈ ON

Φ(Ff)(sN , sS , o) = Ff (sN , sS , o).

(b) On the other hand, if Ff (sN , sS , o) = {f(sN , sS , o)} 6= ∅, then the definition of Ff
ensures that

sN vf sS .

By expanding the definition of vf we have that

ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

s′N vf s′S .

Since s′N vf s′S ⇒ ∀o′, Ff (p′, q′, o′) = {f(p′, q′, o′)} 6= ∅, the above can be rewritten
as follows:

ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

∀o′ ∈ ON , Ff (s′N , s
′
S , o
′) 6= ∅.

The above predicate is proved to be true, and this means that we can write the

5 COMPUTING AN F -SIMULATION 23

following equivalence (for every o ∈ ON):

{f(sN , sS , o)} = {f(sN , sS , o) |
ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

∀o′, Ff (p′, q′, o′) 6= ∅},

which by definition of Φ (Def. 5.2) means that (for every o ∈ ON)

{f(sN , sS , o)} = Φ(Ff)(sN , sS , o)

Finally, since Ff = {f(sN , sS , o)}, we obtain that (for every o ∈ ON)

Ff = Φ(Ff)(sN , sS , o)

Lemma 5.4. Let S = 〈SS , RS , CS , OS ,MS〉, and let N = 〈SN , RN , CN , ON , MN 〉.
Let also Ψf be the operator defined in Def. 5.1, WS ⊆ O∗S be the set of all minimal
operation sequences in MS (Def. 4.7), and Φ be an endomap on the lattice of functions
F : SN × SS ×ON → 2WS built as shown in Def. 5.2.

If Φ has a non-empty fixpoint, then it is possible to extract from it a function f for
which sN vf sS (with sN ∈ SN and sS ∈ SS). Formally, assuming that

(i) ∀sN ∈ SN , sS ∈ SS , o ∈ ON .Φ(F)(sN , sS , o) = F (sN , sS , o), and

(ii) fF : SN × SS ×ON → O∗S
such that
∀sN ∈ SN , sS ∈ SS , o ∈ ON .F (sN , sS , o) 6= ∅⇒ f(sN , sS , o) ∈ F (sN , sS , o),

we have that
vF⊆ ΨfF (vF)

where sN vF sS := ∀o ∈ ON , F (sN , sS , o) 6= ∅.

Proof. Consider a state sN ∈ SN and a state sS ∈ SS , and suppose that

sN vF sS .

By definition of vF , we have that

∀o ∈ ON .F (sN , sS , o) 6= ∅.

The above, along with the hypoteses on f , implies that

∀o ∈ ON .f(sN , sS , o) ∈ F (sN , sS , o) ⊆ Φ(F)(sN , sS , o).

6 RELATED WORK 24

By definition of Φ, the above can be rewritten as follows

∀o ∈ ON .ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S ∈ SS .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

∀o′, F (s′N , s
′
S , o
′) 6= ∅),

which, by definition of vF , can be in turn rewritten as follows

∀o ∈ ON .ρN (sN) ⊇ ρS(sS) ∧
χN (sN) ⊆ χS(sS) ∧

(∀sN
〈HN ,GN ,o〉−−−−−−−→N s′N ,∃s′S ∈ SS .sS •

〈HS ,GS ,f(sN ,sS ,o)〉
=============⇒S s

′
S ∧

HN ⊇ HS ∧

GN ⊆ GS ∧

s′N vF s′S).

From the above, and because of the definition of ΨfF , we have that

(sN , sS) ∈ ΨfF (vF),

from which it follows the thesis we wanted to prove.

6. Related work

While the matching between service templates and node types is indicated in the TOSCA
primer [25] as a way to instantiate TOSCA node types, no definition of matching is given
in either TOSCA [24] or in its primer [25].

A first (formal) definition of matching for TOSCA has been given in [12], where
we proposed four definitions of matching (exact, plug-in, flexible, and white-box) between
TOSCA service templates and node types, each identifying larger sets of service templates
that can be adapted to exactly match a node type. While exact and plug-in matching are
purely syntactical, flexible and white-box matching exploit ontologies to check whether
two management operations are equivalent. In [12] we also showed how a non-exactly
matched service template can be adapted so to exactly match a desired node type. The
matchmaking and adaptation approach presented in this paper differs from that in [12]:
The semantics of management operations is now given by management protocols [7]
(rather than by ontologies), and with the notion of f -simulation we can substitute a
desired operation with sequences of available operations, based upon the effects on states,
requirements and capabilities.

6 RELATED WORK 25

The problem of how to match existing software components has been extensively studied
in recent years. Many approaches are ontology-aware, like for instance the matchmaker
for OWL-S services described by Klusch et al. [20]. Other approaches are behaviour-
aware, like the behavioural congruence for OWL-S services defined by Bonchi et al. [6],
or the heuristic black-box matching described by Eshuis and Grefen [16]. The main
difference between the aforementioned approaches and ours is the type of information
considered when matching single nodes. The matching levels considered by Klusch et
al. [20], by Bonchi et al. [6], and by Eshuis and Grefen [16] are all defined in terms of
input and output data, while we consider also technology requirements and capabilities.

Cavallaro et al. [15] propose an approach to automatically replace services based
upon their functional interface and behaviour models. Cavallaro et al. [15] focus on
many-to-many mappings among service operations, since such mappings have to hold
in whatever state of the service. Our approach is more flexible in the sense that it is
capable of mapping a single operation to different operation sequences depending on the
state in which such operation is invoked. Furthermore, Cavallaro et al. [15] generate
adapter scripts that have to be passed to a proxy any time the corresponding operations
are invoked. Our approach instead adapts operations once for all (by translating the
function f into a set of TOSCA plans).

Reussner et al. [26] describe how to adapt components based on parametric con-
tracts, which permit modifying their interfaces depending on context properties in a
way potentially more expressive than ours. Like us, Reussner et al. [26] exploit finite
state machines to model interaction protocols. However, the approach by Reussner et
al. [26] differs from ours since it does not make the relation between context properties
and protocols, thus loosing information on what it is concretely reachable in a composite
environment explicit.

Closely related approaches are also those by Motahari Nezhad et al. [23], by Inverardi
and Tivoli [18], and by Bennaceur and Issarny [3], even if they propose approaches to
synthesize mediators among service and service clients, while we focus on matching. Our
work shares with the approach by Motahari Nezhad et al. [23] (and previous papers by
the same authors) the idea of exploiting, at the same time, functional interfaces and
behaviour models to match a service’s operation with multiple operations of another
service. Our function f (Def. 4.8) is indeed pretty similar to the interface mapping
proposed by Motahari Nezhad et al. [23]. However, our approach is fully automated
while that by Motahari Nezhad et al. [23] is semi-automated.

The approach by Inverardi and Tivoli [18] shares its baselines with that by Motahari
Nezhad [23], and synthesizes adapters in the form of interaction protocols. Bennaceur
and Issarny [3] instead exploit ontologies and constraint programming to infer one-to-one,
one-to-many, and many-to-many correspondences between components’ interfaces, and
synthesize adapters in the form of labelled transition systems. Our approach synthesises
adapters that are considerably simpler than those produced with the approaches by
Inverardi and Tivoli [18] and Bennaceur and Issarny [3], as they just consist in the
determined f functions (Def. 4.8).

It is also worth noting that our notion of f -simulation extends the notion of one-to-
many operation mapping proposed by Bennaceur and Issarny [3]. Furthermore, despite
the algorithm proposed by Bennaceur and Issarny [3] deals also with many-to-many
mappings, its correctness is validated only by means of various use cases. We instead
formally prove soundness and completeness of our algorithm (see Sect. 5.2).

7 CONCLUSIONS 26

Summing up, to the best of our knowledge, ours is the first fully automated approach
for reusing TOSCA application components, which takes into account both functional
and extra-functional features of TOSCA application components, and which relies on
the widely accepted idea of exploiting behaviour models to match operations, and on
behaviour simulation [27] to go beyond non-relevant operation mismatches.

A similar problem has been faced in the area of algebraic development techniques.
For instance, Martins et al. [21, 22] show that the standard notion of signature morphism
(which can be thought morally as our notion of syntactic plug-in matching) is often not
flexible enough to deal with the problems of software reuse and refinement. In analogy
with our work, the Martin et al. propose a notion of refinement based on the more
flexible logical interpretations.

Action refinement has been also extensively studied in the context of concurrency
theory, see e.g., Aceto [1], Van Glabbeek and Goltz [29], Gorrieri and Rensink [17]. In
this setting action refinement is far more sophisticated than the one provided by our
translation function f : a single action can usually be translated into a set of parallel
processes, while f simply refines an action by a sequence of more fine-grained actions.
At the level of behavioural equivalences and pre-orders this usually forces to leave the
interleaving semantics and consider truly concurrent semantics (see e.g, Van Glabbeek
and Goltz [29]). Another crucial simplification in our setting, which is however motivated
by the TOSCA specification, is the absence of non-determinism. This simplification,
which is sometimes referred as sequential action refinement, has been presented as the
starting point for more elaborated theories (such as those by Aceto [1] and by Gorrieri
and Rensink [17]), while in our work it covers a key role justified by applications.

It is worth to also discuss how f -simulation relates to stuttering [14] and branch-
ing [30] bisimulations. Stuttering bisimulation is defined on Kripke structures, where
labels appear on states but not on transitions, and therefore there is no need for a
function for translating transition labels. Branching bisimulation is instead defined on
labelled transition systems, and permits matching a transition only with another transi-
tion having the same label, followed by a sequence of silent steps. It thus not requires any
translation function which behaves as f , i.e. which maps a (desired) labelled transition to
sequences of (available) labelled transitions. Furthermore, in both stuttering and branch-
ing bisimulations, the intermediate states occurring in a sequence of transitions should
satisfy some equivalence constraints, while in f -simulation these states are completely
hidden behind the definition of ⇒ (Def. 4.6). This abstraction is safe in our context,
since the interactions among components relies just on requirements and capabilities,
which are annotated in the transitions and checked by the definition of f -simulation (see
Remark 4.1). Moreover, since we consider a preorder rather than an equivalence, the
additional transitions of intermediate states do not play any role.

7. Conclusions

In this paper, we first recalled how to formally model the behaviour of management
operations in TOSCA applications by means of management protocols [7]. It is worth
highlighting that such model builds upon, but is not limited to, TOSCA. It can indeed
be adapted to other languages for specifying cloud applications, and more in general to

7 CONCLUSIONS 27

any stateful behaviour model of systems that describe states, requirements, capabilities,
and operations.

We also introduced a notion of management protocol simulation, and we exploited
it to constrain the (syntactical) exact and plug-in matching of [12] to take also into
account the management behaviour of TOSCA applications. We then relaxed the notion
of simulation into that of f -simulation, where f is a function associating each transition
of a desired management protocol with a sequence of transitions of an available protocol.
On that basis, we further constrained the notion of plug-in matching, by permitting
to match the operations of a desired component with sequences of operations of an
available application. We also described how to compute the function f determining the
f -simulation, and how (flexibly) plug-in matching applications can be suitably adapted
to be employed in place of desired components.

We see different possible extensions of this work. First, we intend to extend the proof-
of-concept implementation of the syntactic matching that we proposed in [12] to support
the behaviour-aware matching illustrated in this paper, and to integrate it in the open-
source OpenTOSCA ecosystem [4]. We also plan to exploit such implementation to
experimentally validate our approach.

We also plan to refine and extend our approaches for matching, adapting, and reusing
TOSCA applications. On the one hand, we plan to constrain the topology fragment
matchmaking approach that we proposed in [28] by including the behaviour information
of management protocols. On the other hand, we intend to investigate other weaker
notions of simulation to further relax our behaviour-aware matching notions.

Finally, it is worth noting that management protocols have been recently extended
to permit modelling how nodes behave in presence of faults [8]. Essentially, fault-aware
management introduce a new transition relation that model the explicit fault handling of
a node. We plan to extend our notions of simulation (as well as the algorithm to compute
f -simulations) to cope also with fault-handling transitions, and hence to permit matching
cloud applications by taking into account both their normal and faulty behaviour.

Acknowledgments

Work partly supported by the project Through the fog (PRA 2016 64) funded by the
Univ. of Pisa, and by LABEX MILYON (ANR-10-LABX-0070) of Univ. of Lyon, within
the program Investissements d’Avenir (ANR-11-IDEX-0007) operated by the French Na-
tional Research Agency (ANR).

References

[1] Luca Aceto. Action refinement in process algebras, volume 3. Cambridge University Press, 1992.
[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwin-

ski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, 2010.

[3] Amel Bennaceur and Valérie Issarny. Automated synthesis of mediators to support component
interoperability. Software Engineering, IEEE Transactions on, 41(3):221–240, 2015.

[4] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann, Alexander Nowak,
and Sebastian Wagner. OpenTOSCA – a runtime for TOSCA-based cloud applications. In Service-
Oriented Computing, volume 8274 of LNCS, pages 692–695. Springer, 2013.

7 CONCLUSIONS 28

[5] Filippo Bonchi, Antonio Brogi, Andrea Canciani, and Jacopo Soldani. Behaviour-aware matching
of cloud applications. In 10th International Symposium on Theoretical Aspects of Software Engi-
neering, TASE 2016, Shanghai, China, July 17-19, 2016, pages 117–124. IEEE Computer Society,
2016.

[6] Filippo Bonchi, Antonio Brogi, Sara Corfini, and Fabio Gadducci. A net-based approach to web
services publication and replaceability. Fundamenta Informaticae, 94(3-4):305–330, 2009.

[7] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. Modelling and analysing cloud application
management. In Schahram Dustdar, Frank Leymann, and Massimo Villari, editors, Service Oriented
and Cloud Computing: 4th European Conference, ESOCC 2015, Taormina, Italy, September 15-
17, 2015, Proceedings, volume 9306 of Lecture Notes in Computer Science, pages 19–33. Springer
International Publishing, 2015.

[8] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. Fault-aware application management pro-
tocols. In Marco Aiello, Broch Einar Johnsen, Schahram Dustdar, and Ilche Georgievski, editors,
Service-Oriented and Cloud Computing: 5th IFIP WG 2.14 European Conference, ESOCC 2016,
Vienna, Austria, September 5-7, 2016, Proceedings, volume 9846 of Lecture Notes in Computer
Science, pages 219–234. Springer International Publishing, 2016.

[9] Antonio Brogi, Andrea Canciani, Jacopo Soldani, and Pengwei Wang. A Petri net-based approach

to model and analyze the management of cloud applications. In Maciej Koutny, J́’org Desel, and
Jetty Kleijn, editors, Transactions on Petri Nets and Other Models of Concurrency XI, volume
9930 of Lecture Notes in Computer Science, pages 28–48. Springer Berlin Heidelberg, 2016.

[10] Antonio Brogi, José Carrasco, Javier Cubo, Francesco D’Andria, Ahmad Ibrahim, Ernesto Pimentel,
and Jacopo Soldani. EU project SeaClouds - adaptive management of service-based applications
across multiple clouds. In Markus Helfert, Frédéric Desprez, Donald Ferguson, Frank Leymann, and
Vı́ctor Méndez Muñoz, editors, CLOSER 2014 - Proceedings of the 4th International Conference
on Cloud Computing and Services Science, Barcelona, Spain, April 3-5, 2014, pages 758–763.
SciTePress, 2014.

[11] Antonio Brogi, Antonio Di Tommaso, and Jacopo Soldani. Validating TOSCA application topolo-
gies. In Lúıs Ferreira Pires, Slimane Hammoudi, and Bran Selic, editors, Proceedings of the 5th In-
ternational Conference on Model-Driven Engineering and Software Development, MODELSWARD
2017, Porto, Portugal, February 19-21, 2017., pages 667–678. SciTePress, 2017.

[12] Antonio Brogi and Jacopo Soldani. Finding available services in TOSCA-compliant clouds. Science
of Computer Programming, 115–116:177–198, 2016.

[13] Antonio Brogi, Jacopo Soldani, and PengWei Wang. TOSCA in a nutshell: Promises and per-
spectives. In Massimo Villari, Wolf Zimmermann, and Kung-Kiu Lau, editors, Service-Oriented
and Cloud Computing: Third European Conference, ESOCC 2014, Manchester, UK, September
2-4, 2014. Proceedings, volume 8745 of Lecture Notes in Computer Science, pages 171–186, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[14] Michael C. Browne, Edmund M. Clarke, and Orna Grümberg. Characterizing finite kripke structures
in propositional temporal logic. Theoretical Computer Science, 59(1–2):115 – 131, 1988.

[15] Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella. An automatic approach to enable
replacement of conversational services. In Proceedings of the 7th International Joint Conference on
Service-Oriented Computing, ICSOC-ServiceWave ’09, pages 159–174. Springer-Verlag, 2009.

[16] Rik Eshuis and Paul Grefen. Structural matching of bpel processes. In Proceedings of ECOWS ’07,
pages 171–180. IEEE, 2007.

[17] Roberto Gorrieri and Arend Rensink. Action refinement. In Handbook of process algebra, pages
1047–1147. 2001.

[18] Paola Inverardi and Massimo Tivoli. Automatic synthesis of modular connectors via composition
of protocol mediation patterns. In Proceedings of the ICSE’13, pages 3–12. IEEE, 2013.

[19] Bart Jacobs and Jan Rutten. A tutorial on (Co)Algebras and (Co)Induction. EATCS Bulletin,
62:62–222, 1997.

[20] Matthias Klusch, Benedikt Fries, and Katia Sycara. Owls-mx: A hybrid semantic web service
matchmaker for owl-s services. Web Semantics: Science, Services and Agents on the WWW,
7(2):121–133, 2009.

[21] Manuel A Martins, Alexandre Madeira, and Lúıs Soares Barbosa. Refinement via interpretation.
In Software Engineering and Formal Methods, 2009 Seventh IEEE International Conference on,
pages 250–259. IEEE, 2009.

[22] Manuel A. Martins, Alexandre Madeira, and Lúıs Soares Barbosa. The role of logical interpretations
in program development. Logical Methods in Computer Science, 10(1), 2014.

7 CONCLUSIONS 29

[23] Hamid Reza Motahari Nezhad, Guang Yuan Xu, and Boualem Benatallah. Protocol-aware match-
ing of web service interfaces for adapter development. In Proceedings of the 19th International
Conference on World Wide Web, WWW, pages 731–740. ACM, 2010.

[24] OASIS. Topology and Orchestration Specification for Cloud Applications. http://docs.

oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf, 2013.
[25] OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer. http:

//docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf, 2013.
[26] Ralf H. Reussner, Steffen Becker, and Viktoria Firus. Component Composition with Parametric

Contracts. In Net.ObjectDays, pages 155–169, 2004.
[27] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,

2011.
[28] Jacopo Soldani, Tobias Binz, Uwe Breitenbücher, Frank Leymann, and Antonio Brogi. ToscaMart:

A method for adapting and reusing cloud applications. Journal of Systems and Software, 113:395–
406, 2016.

[29] Rob Van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica, 37(4):229–327, 2001.

[30] Rob J Van Glabbeek and W Peter Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM (JACM), 43(3):555–600, 1996.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf

APPENDIX A EXAMPLE OF NON-SIMULATINGMANAGEMENT PROTOCOLS30

Appendix A. Example of non-simulating management protocols

The objective of this appendix is to complement Example 5.1 by showing what happens
when applying the algorithm ComputeFs to two management protocols that cannot
f -simulate (for any f).

Example A.1. Consider again the node type Server, whose management protocolMServer
is in Fig. 6. Consider also the service template Tomcat, and suppose that its manage-
ment protocolM′′Tomcat is that in Fig. A.10 (which differs from the management protocol
M′Tomcat in Fig. 6 only because of the absence of the transition leading from Running to
Configured by executing the operation Stop). We now show that ComputeFs permits
checking that there is no function f such that M′′Tomcat vf MServer.

M′′Tomcat

Figure A.10: Another example of management protocol.

ComputeFs initially builds the matrix in Fig. A.11 by checking whether the states of
M′′Tomcat andMServer are compatible in terms of requirements and capabilities. If a state
of M′′Tomcat is compatible with a state of MServer (such as in the case of the initial states
NotInstalled and Unavailable), the corresponding cell is filled by mapping each operation
of Server to any operation sequence in Tomcat (denoted by WTomcat). Otherwise, the cell
is left empty (such as in the case of NotInstalled and Working).

ComputeFs then iteratively refines the matrix in Fig. A.11 by removing all operation
mappings that lead to states that do not f -simulate. The matrix obtained after the first
refinement step is displayed in Fig. A.12. It is worth noting that two pairs of states
(namely, Running and Working, and Paused and Working) are no more candidate to f -
simulate. In both cases, this is because there is no sequence of operations of Tomcat
leading to a state that is candidate to f -simulate the state reached by executing Stop
when Server is in state Working.

Similar considerations apply to the second and third refinement steps, whose resulting
matrices are displayed in Figs. A.13 and A.14, respectively. The matrix in Fig. A.14
cannot be refined any more (as no cell is containing operation mappings to be refined).
The initial state NotInstalled of Tomcat is not candidate to f -simulate the initial state
Unavailable of Server, which means that there is no function f such that M′′Tomcat vf
MServer (viz., M′′Tomcat does not f -simulate MServer).

APPENDIX A EXAMPLE OF NON-SIMULATINGMANAGEMENT PROTOCOLS31

Unavailable Stopped Working

NotInstalled

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Installed

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Configured

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Running

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Paused

InstallWTomcat

Start WTomcat

Stop WTomcat

UninstallWTomcat

Tomcat Se
rv
e
r

Figure A.11: Initial matrix computed by ComputeFs when determining a function f such that
M′′

Tomcat vf MServer. White cells correspond to states that are candidate to f -simulate, grey cells
correspond to states that do not f -simulate.

Unavailable Stopped Working

NotInstalled

Install {ε,Install,Install·Config}
Start WTomcat

Stop WTomcat

UninstallWTomcat

Install WTomcat

Start {Install·Config·Start,
Install·Config·Start·Pause}

Stop WTomcat

Uninstall {ε,Install,Install·Config}

Installed

Install {ε,Config,Config·Uninst}
Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start {Config·Start,
Config·Start·Pause}

Stop WTomcat

Uninstall {ε,Config,
Config·Unistall}

Configured

Install {ε,Uninst,Uninst·Install}
Start WTomcat

Stop WTomcat

UninstallWTomcat

InstallWTomcat

Start {Start,Start·Pause}
Stop WTomcat

Uninstall {ε,Uninstall,
Uninstall·Pause}

Running

Paused

Tomcat Se
rv
e
r

Figure A.12: Refinement of the matrix in Fig. A.11 obtained by removing all mappings that lead to states
that are not candidate to f -simulate. Refined operation mappings are thicker, unchanged operation
mappings are lighter.

APPENDIX A EXAMPLE OF NON-SIMULATINGMANAGEMENT PROTOCOLS32

Unavailable Stopped Working

NotInstalled

Install {ε,Install,Install·Config}
Start WTomcat

Stop WTomcat

UninstallWTomcat

Installed

Install {ε,Config,Config·Uninst}
Start WTomcat

Stop WTomcat

UninstallWTomcat

Configured

Install {ε,Uninst,Uninst·Install}
Start WTomcat

Stop WTomcat

UninstallWTomcat

Running

Paused

Tomcat Se
rv
e
r

Figure A.13: Refinement of the matrix in Fig. A.12 obtained by removing all mappings that lead to
states that are not candidate to f -simulate.

Unavailable Stopped Working

NotInstalled

Installed

Configured

Running

Paused

Tomcat Se
rv
e
r

Figure A.14: Refinement of the matrix in Fig. A.13 obtained by removing all mappings that lead to
states that are not candidate to f -simulate.

