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SUMMARY

How to flexibly manage complex applications across heterogeneous cloud platforms is one of the main
concerns in today’s enterprise IT. The OASIS standard TOSCA and the Docker ecosystem are two emerging
solutions trying to address this problem from different perspectives. In this paper we propose a solution
that tries to synergically combine the pros of both TOSCA and of Docker. More precisely, we propose a
TOSCA-based representation for specifying the software components and the Docker containers forming an
application. We also present TOSKER, an engine for orchestrating the management of multi-component
applications based on the proposed TOSCA representation and on Docker. Finally, we illustrate how
TOSKER was fruitfully exploited in a concrete case study, based on a third-party application. Copyright
c© 2018 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cloud computing has revolutionised IT, by allowing to run on-demand distributed applications at a
fraction of the cost which was necessary just a few years ago [5]. At the same time, the problem of
automating the management of (complex) multi-component applications over heterogeneous cloud
infrastructures is receiving increasing attention [17, 27]. The OASIS standard TOSCA (Topology
and Orchestration Specification for Cloud Applications [32]) and the Docker ecosystem [19] are
two emerging solutions trying to address this problem from different perspectives.

On the one hand, TOSCA [32] follows a model-driven approach. It indeed provides a YAML-
based modelling language for specifying portable cloud applications, and for automating their
deployment and management. TOSCA permits describing the structure of a cloud application as
a typed, directed topology graph, whose nodes represent application components, and whose arcs
represent dependencies among such components. Each node of a topology can also be associated
with the corresponding components requirements, the operations to manage it, the capabilities it
features, and the policies applied to it. Inter-node dependencies associate the requirements of a node
with the capabilities featured by other nodes. An application topology can then be declaratively
processed [23] to automatically deploy such application on a TOSCA-compliant cloud platform.

On the other hand, Docker [19] follows a “snapshot-based” approach. Docker is the de-facto
standard for container-based virtualisation [34], and it permits packaging software components
(together with all software dependencies they need to run) in Docker images, which are then
exploited as read-only templates to create and run Docker containers. Docker containers can
also mount external volumes, which ensure data persistence independently of the lifecycle of
containers [29]. Docker also permits orchestrating containers, by allowing to define multi-
container Docker applications [36]. Given (the images of) the containers forming a multi-container
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application, the volumes they must mount, Docker compose [20] is indeed capable of automatically
deploying the corresponding application.

Of course, both TOSCA and Docker have pros and cons. For instance, while TOSCA is a well-
documented standard that permits orchestrating complex applications formed by heterogeneous
components, application descriptions tend to become quite verbose. Docker instead is a production
ready tool, with a huge repository of images (Docker Hub [21]), but it was not designed to
orchestrate complex applications composed by multiple and heterogeneous components. Indeed,
Docker containers are treated as “black-boxes”, and they constitute the minimum deployment
entity considered by currently existing approaches for deploying multi-component applications with
Docker (e.g., [3, 20, 22, 38]).
The objective of this paper was to identify and develop a solution that synergically combines the
pros of both TOSCA and Docker. A concrete solution is to still rely on Docker containers as
a portable and lightweight mean to deploy application components on cloud platforms, by also
allowing to independently manage the components and containers forming a multi-component
application [33]. In this paper we propose a solution following this idea, which relies on the OASIS
standard TOSCA [32] for specifying the structure and management behaviour of multi-component
applications, and for orchestrating them on top of Docker containers. More precisely, our main
contributions are the following:

• We propose a TOSCA-based representation for multi-component applications. The latter
permits to modularly specify the requirements, capabilities, management operations, policies,
and properties of the software components forming an application, along with those of the
Docker containers and Docker volumes needed to run them. The proposed representation also
permits indicating the relationships occurring among the components of an application (e.g., a
software component is hosted on a container, a component connects to another).

• We introduce a default management behaviour of software components, Docker containers
and Docker volumes. We also show how to customise the management behaviour of the
software components forming a TOSCA application.

• We also present TOSKER, an engine for orchestrating the management of multi-component
applications based on the proposed TOSCA representation, and on Docker.

We also show how we fruitfully exploited the proposed TOSCA-based representation and TOSKER
on a concrete case study, based on a third-party multi-component application (viz., Sock shop [39]).

A short description of a first prototype of TOSKER was provided in [14]. This article
extends [14] (i) by integrating management protocols [7] with the TOSCA-based representation
for multi-component applications to permit customising the management behaviour of application
components, (ii) by presenting an extended prototype of TOSKER, which now supports the
orchestration of software components whose structure and management behaviour has been
customised, and (iii) by including a discussion of how TOSKER has been fruitfully exploited on
a concrete case study.

The rest of the paper is organised as follows. Sect. 2 provides some background on TOSCA,
Docker and management protocols. Sect. 3 presents a multi-component application that will be
used as running example. Sect. 4 illustrates the proposed TOSCA-based representation for multi-
component applications. Sect. 5 illustrates the design of TOSKER. Sect. 6 details our prototype
implementation of TOSKER. Sect. 7 presents the case study based on the Sock shop application.
Finally, Sects. 8 and 9 discuss related work and draw some concluding remarks.

2. BACKGROUND

2.1. Docker

Docker [19] is a Linux-based platform for developing, shipping, and running applications
through container-based virtualisation. Container-based virtualisation [37] exploits the kernel of
the operating system of a host to run multiple isolated user-space instances, called containers.
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Each Docker container packages the applications to run, along with whatever software support
they need (e.g., libraries, binaries, etc.). Containers are built by instantiating so-called Docker
images, which can be seen as read-only templates providing all instructions needed for creating and
configuring a container. Existing Docker images are distributed through so-called Docker registries
(e.g., Docker Hub [21]), and new images can be built by extending existing ones.

Docker containers are volatile, and the data produced by a container is (by default) lost when
the container is deleted. This is why Docker introduces volumes, which are specially-designated
directories (shared among containers) whose purpose is to persist data, independently of the
lifecycle of the containers mounting them. Docker never automatically deletes volumes when a
container is removed, nor it removes volumes that are no longer referenced by any container.

Docker also allows containers to intercommunicate. It indeed permits creating virtual networks,
which span from bridge networks (for single hosts), to complex overlay networks (for clusters of
hosts).

2.2. TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications [32]) is an OASIS
standard whose main goals are to enable (i) the specification of portable cloud applications
and (ii) the automation of their deployment and management. TOSCA provides a YAML-based
and machine-readable modelling language that permits describing cloud applications. Obtained
specifications can then be processed to automate the deployment and management of the specified
applications.

Figure 1. The TOSCA metamodel [32].

TOSCA permits specifying a cloud application as a service template, that is in turn composed by a
topology template, and by the types needed to build such a topology template (Fig. 1). The topology
template is a typed directed graph that describes the topological structure of a multi-component
application. Its nodes (called node templates) model the application components, while its edges
(called relationship templates) model the relations occurring among such components.

Node templates and relationship templates are typed by means of node types and relationship
types, respectively. A node type defines the observable properties of a component, its possible
requirements, the capabilities it may offer to satisfy other components’ requirements, and the
interfaces through which it offers its management operations. Requirements and capabilities are also
typed, to permit specifying the properties characterising them. A relationship type instead describes
the observable properties of a relationship occurring between two application components. As the
TOSCA type system supports inheritance, a node/relationship type can be defined by extending
another, thus permitting the former to inherit the latter’s properties, requirements, capabilities,
interfaces, and operations (if any).

Node templates and relationship templates also specify the artifacts needed to actually realise their
deployment or to implement their management operations. As TOSCA allows artifacts to represent
contents of any type (e.g., scripts, executables, images, configuration files, etc.), the metadata needed
to properly access and process them is described by means of artifact types.
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Figure 2. The architecture of the Thinking application.

TOSCA applications are then packaged and distributed in CSARs (Cloud Service ARchives). A
CSAR is a zip archive containing an application specification along with the concrete artifacts
realising the deployment and management operations of its components.

2.3. Management protocols

Management protocols [7] permit describing the management behaviour of the components forming
the topology of a TOSCA application. Management protocols are finite state machines whose states
and transitions are associated with conditions on the components requirements and capabilities.
Intuitively speaking, the objective of those conditions is to define the consistency of component
states and to constrain the executability of component operations to the satisfaction of their
requirements.

The management behaviour of a TOSCA application is derived by composing the management
protocols of its components, according to the application’s topology. The global state of an
application is indeed defined as the set containing the current state of each of the application
components. A global state is considered to be “valid” only if all requirements assumed to hold
by a node are connected to capabilities that are actually provided by another node (in such global
state, of course). An application can only transit from one valid global state to another, by executing
a management operation on a component (provided that all requirements needed to execute such
operation are satisfied in the starting global state).

The derived management behaviour can then be exploited to automate various useful analyses.
For instance, given a plan orchestrating the management operations of a TOSCA application to
achieve some management goal, one can readily check whether such plan is valid by verifying that
it can only traverse valid global states. Concrete examples of management protocols can be found
in Sect. 4.2.

3. RUNNING EXAMPLE

We hereby present the Thinking open-source web application∗, which will be used as a reference
example in Sects. 4 and 5. Thinking allows users to share their thoughts so that all other users
can read them through a web-based graphical user interface. Thinking is composed of three main
components, namely (i) a Mongo database storing the collection of thoughts shared by end-users,
(ii) a Java-based REST API to remotely access the database of shared thoughts, and (iii) a web-
based GUI visualising all shared thoughts and allowing to insert new thoughts into the database.
Fig. 2 illustrates a representation of the Thinking application:

∗The source code of Thinking is publicly available on GitHub at https://github.com/di-unipi-socc/
thinking.
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(i) The database is obtained by directly instantiating a MongoDB container, which needs to be
attached to a volume where the shared thoughts will be persistently stored.

(ii) The API is hosted on a Maven Docker container, and it requires to be connected to the
MongoDB container (for remotely accessing the database of shared thoughts).

(iii) The GUI is hosted on a NodeJS Docker container, and it depends on the availability of the API
to properly work (as it sends GET/POST requests to the API to retrieve/add shared thoughts).

The GUI and the API are also provided with a set of shell scripts to implementing their
lifecycle operations. Namely, they are both equipped with a set of scripts (viz., install.sh,
configure.sh, start.sh, stop.sh, uninstall.sh) implementing the operations to
install, start, configure, stop, uninstall them. The API is also equipped with the script
push default.sh, which can be optionally executed when the API is configured (but not
running) to add a default set of thoughts to the MongoDB database. To effectively manage the
GUI and the API, their management operations must be executed in a given (partial) order, and
each of them can be executed only if some requirements are satisfied (e.g., the container hosting the
corresponding component is up and running).

4. SPECIFYING MULTI-COMPONENT APPLICATIONS

We hereby introduce the TOSCA types that permit specifying the topology and management
behaviour of a multi-component application (in Sect. 4.1 and 4.2, respectively). These types
are designed to allow TOSKER to orchestrate the deployment and management of specified
applications.

4.1. Node, relationship and artifact types

Multi-component applications typically integrate various and heterogeneous components [25]. We
hereby define a TOSCA-based representation for such components, as well as for the Docker
containers and Docker volumes that will be used to form their runtime infrastructure.
We first define three different TOSCA node types† (Fig. 3) to permit distinguishing the Docker
containers, the Docker volumes, and the application components forming a multi-component
application.

• tosker.nodes.Container permits representing Docker containers, by indicating whether a
container requires a connection (to another Docker container or to an application component),
whether it has a generic dependency on another node in the topology, or whether it needs
some persistent storage (hence requiring to be attached to a Docker volume). tosker.no-
des.Container also permits indicating whether a container can host an application component,
whether it offers an endpoint where to connect to, or whether it offers a generic feature (to
satisfy a generic dependency requirement of another container/application component). To
complete the description, tosker.nodes.Container can contain properties (ports, env variables,
command, and share data, respectively) for specifying the port mappings, the environment
variables, the command to be executed when running the corresponding Docker container,
the list of files and folders to share with the host. Finally, tosker.nodes.Container lists the
operations to manage a container (which corresponds to the basic operations offered by the
Docker platform to manage Docker containers [29]).

• tosker.nodes.Volume permits specifying Docker volumes, and it defines a capability
attachment to indicate that a Docker volume can satisfy the storage requirements of Docker

†The complete definition of all TOSCA types discussed in this section is publicly available on GitHub at https:
//github.com/di-unipi-socc/tosker-types.
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Figure 3. TOSCA node types for multi-component, Docker-based applications, viz., tosker.nodes.Container,
tosker.nodes.Software, and tosker.nodes.Volume.

containers. It also lists the operations to manage a Docker volume (which corresponds to the
operations to create and delete Docker volumes offered by the Docker platform [29]).

• tosker.nodes.Software permits indicating the software components forming a multi-
component application. It permits specifying whether an application component requires a
connection (to a Docker container or to another application component), whether it has a
generic dependency on another node in the topology, and that it has to be hosted on a Docker
container or on another component. tosker.nodes.Software also permits indicating whether
an application component can host another application component, whether it provides an
endpoint where to connect to, or whether it offers a generic feature (to satisfy a generic
dependency requirement of a container/application component). Finally, tosker.nodes.Softwa-
re lists the operations to manage an application component by exploiting the TOSCA standard
lifecycle interface [32] (viz., create, configure, start, stop, delete).

It is worth noting that TOSCA supports inheritance [32], hence allowing to extend the TOSKER
types to define new types. For instance, if a software component needs an additional requirement,
offers an additional capability or provides additional management operations needed to customise
its management behaviour, then it is possible to derive a new type from tosker.nodes.Software and
to use such type to model the software component.

The interconnections and interdependencies among the nodes forming a multi-component
application can be indicated by exploiting the TOSCA normative relationship types [32].

• tosca.relationships.AttachesTo can indeed be used to attach a Docker volume to a Docker
container.

• tosca.relationships.ConnectsTo can indicate the network connections to establish between
Docker containers and/or application components.

• tosca.relationships.HostedOn can be used to indicate that an application component is hosted
on another component or on a Docker container (e.g., to indicate that a web service is hosted
on a web server, which is in turn hosted on a Docker container).

• tosca.relationships.DependsOn can be used to indicate generic dependencies between the
nodes of a multi-component application (e.g., to indicate that a component must be deployed
before another, as the latter depends on the availability of the former to properly work).
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Figure 4. The TOSCA representation of the Thinking application shown in Fig. 2.

Example 1. Consider again the Thinking application of Sect. 3. Fig. 4 illustrates a representation of
the Thinking application in TOSCA, where the three main components (viz., MongoDB, API and
GUI) are modelled as follows:

(i) MongoDB is modelled as a node of type tosker.nodes.Container and it is attached to a volume
(DBVolume) through a relationship of type tosca.relationships.AttachesTo.

(ii) API is modelled as a node of type APISoftware hosted on a node of type tosker.nodes.Con-
tainer (viz., Maven). APISoftware is a customised type derived from tosker.nodes.Software,
which adds a new interface containing the operation push default. The connection from API
to MongoDB is modelled as a relationship of type tosca.relationships.ConnectsTo (connecting
the requirement connection of API to the capability endpoint of MongoDB).

(iii) GUI is modelled as a node of type tosker.nodes.Software and it is hosted on a node of
type tosker.nodes.Container (viz., NodeJS). The fact that GUI depends on the availability of
API is modelled with a relationship of type tosca.relationships.DependsOn (connecting the
requirement dependency of GUI to the capability feature of API).

Finally, also artifacts must be typed [32], as they are used to implement deployment and
management operations of the nodes forming a multi-component application and they must specify
the metadata needed to properly access and process them. We hence define tosker.artifacts.Image
and tosker.artifacts.Dockerfile to permit indicating that an artifact is an actual image or a
Dockerfile, which will then be used to create a Docker container. We also extend such artifact
types by defining tosker.artifacts.Image.Service and tosker.artifacts.Dockerfile.Service, to permit
distinguishing images that execute a service when started from those that “simply package” a
runtime environment. We can instead rely on TOSCA normative artifact types [32] for all other
kinds of artifacts linked by the nodes in a multi-container Docker application.

Example 2. Consider again the Thinking application of Sect. 3. The image artifact associated to
the MongoDB container is of type tosker.artifacts.Image.Service, as it links to an image offering a
MongoDB server when executed. The image artifacts associated to the containers Node and Maven
are instead of type tosker.artifacts.Image, as they link to images just offering runtime environments
(for NodeJS-based and Maven-based applications, respectively). The management operations of
GUI and API are instead implemented by “.sh” scripts‡.

‡The resulting TOSCA application specification is publicly available at https://github.com/
di-unipi-socc/TosKer/blob/master/data/examples/thinking-app/thinking/thinking.
yaml. A CSAR packaging such specification (together with all artifacts needed to deploy and manage the Thinking
application) is available at https://github.com/di-unipi-socc/TosKer/blob/master/data/
examples/thinking-app/thinking.csar.
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4.2. Management protocols

TOSKER node types are associated with a default management protocol describing their default
management behaviour. Fig. 5 shows the default management protocols associated to the node
types tosker.nodes.Container, tosker.nodes.Volume, and tosker.nodes.Software, which are designed
to model the standard management lifecycle of Docker containers, Docker volumes, and software
components, respectively.

The default management protocol for nodes of type tosker.nodes.Container is shown in Fig. 5.(a).
The initial state of a Docker container is deleted, in which the container can only perform the
operation create to become created. Once created, a Docker container can execute the operation
delete to return to be deleted, or it can become running by executing the operation start. While
running, a Docker container can return to be created by executing the operation stop. The running
state is the only state where a Docker container assumes all its requirements to be satisfied, and
where it continues to provide all its capabilities (hence satisfying all requirements connected to
them).

The default lifecycle of nodes of type tosker.nodes.Volume is modelled by the management
protocol in Fig. 5.(b). A Docker volume is initially deleted, viz., it is not present yet. From this
state the volume can transit to the created state by executing the operation create. In the created
state the volume offers the capability attachment and it can transit back to the deleted state by
executing the operation delete.

The default management protocol for nodes of type tosker.nodes.Software is illustrated in
Fig. 5.(c). The initial state of a software component is deleted, from which it can become created by
executing its management operation create. Once created, a software component can either return
to be deleted (by executing the operation delete), or it can become configured (by executing the
operation configure). When in state configured, a software component can execute the operations
delete (which leads it back to its initial state) and start (which makes it become running). In its state
running, a component can only execute the operation stop to go back to its state configured. Notice
that running is the only state where a component assumes its requirement to continue to be satisfied,
and where it continues to provide all its capabilities (hence satisfying all requirements connected to
them).

Customised management protocols can be associated with a node to customise its management
behaviour. New management protocols can indeed be defined by creating policies of type tosker.pol-
icies.Protocol.

The tosker.policies.Protocol has three main properties to define a management protocol, namely
states, transitions, and initial state. The property states is a map state→ conds, where state is
the name of a state, and conds the conditions on requirements and capabilities associated to such
state (viz., which requirements must be satisfied and which capabilities are provided). The property
transitions is a list of transitions, each of which indicates the source state of a transition, its target
state, the list of the requirements needed to fire such transition, and the operation to be executed
to enact the transition. Finally, the property initial state contains the name of the initial state of a
management protocol.

Example 3. A new policy of type tosker.policies.Protocol is added to the specification of our running
example, to define the management protocol of API. Its protocol (Fig. 6) is essentially analogous
to that of nodes of type tosker.nodes.Software (viz., Fig. 5.c). The only difference is the additional
transition allowing to self-loop over the configured state by executing the operation push default. In
this way two possible plans to run the component can be used, one which executes the push default
and the other which not executes it (viz. create, configure, start or create, configure, push default,
start).

Finally, it is worth noting that the possibility of extending TOSKER types (by adding new
requirements, capabilities or management operations), along with that of defining customised
management protocols (through policies of type tosker.policies.Protocol), enables the customisation
of the software components orchestrated by TOSKER.
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(a)

(b)

(c)

Figure 5. Default management protocol for nodes of type (a) tosker.nodes.Container, (b) tosker.nodes.Volu-
me, and (c) tosker.nodes.Software, where r represent the requirements needed by a node in a state or to fire

a transition, and where o represents the capabilities actually provided by a node in a state.

Figure 6. Customised management protocol for the component API of the application in our running
example.

5. TOSKER ARCHITECTURE

Fig. 7 shows the architecture of TOSKER, an engine for orchestrating multi-component application
based on our TOSCA-based representation and on Docker. TOSKER is designed to be modular
and easily extensible. The architecture of TOSKER partitions the functionalities of TOSKER into
lightweight modules that interact with each other, and new functionalities can be easily added to
TOSKER by developing and plugging-in new modules.

User interface. The UI allows to feed TOSKER with the necessary input. The latter includes a CSAR
(packaging the TOSCA specification of a multi-component application together with all artifacts
needed to realise its management [32]), and a sequential plan listing the operations to be executed
on the application components (specified as a list of triples 〈component, interface, operation〉).
Utilities. TOSKER exploits three utility modules, called TOSCA Parser, Plan Checker, and State
Storage. The TOSCA Parser is a utility module for parsing a CSAR and generating an internal
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Figure 7. The architecture of TOSKER.

representation of the application it packages. Such representation will be exploited by the other
modules in TOSKER to deploy and manage the corresponding application.

The Plan Checker implements the analysis based on management protocols, which permits
checking whether a plan can be executed before actually executing it. More precisely, the Plan
Checker is used to check whether a sequence of operations can be executed on an application in
its current state. Each operation in the sequence can be executed on the corresponding component if
and only if (i) there exist a corresponding transition in the component’s management protocol, (ii) all
the requirements needed to execute such transition are satisfied in the state where the transition has
to be fired, and (iii) the execution of the transition does not result in stopping to provide capabilities
needed by other components.

The State Storage is in charge of persistently storing the state of the components of the
applications deployed by TOSKER. This permits remembering the states of the components among
consecutive plan executions, hence allowing to enact the checks of plans.

Orchestration core. The Orchestrator is the core component of TOSKER, as it is in charge of
orchestrating the management of multi-component applications. It first receives the inputs from the
UI, and it exploits the TOSCA Parser to generate an internal representation of the multi-component
application contained in the input CSAR.

The Orchestrator then checks the input plan on the application topology. It first loads the state
of the application from the State Storage and it then checks whether the sequential plan can be
executed by exploiting Plan Checker.

If the plan can be executed, then Orchestrator orchestrates the actual execution of the
corresponding management operations by coordinating the Container Manager, Volume
Manager and Software Manager. It indeed iterates over the sequence of management operations
forming a plan, and it dispatches the actual execution of an operation on a component to
the corresponding manager (e.g., to create a component of type tosker.nodes.Container, the
Orchestrator dispatches the actual execution of create on such component to the Container
Manager).

Managers. The Container Manager, Volume Manager, and Software Manager implement
the actual lifecycle for components of type tosker.nodes.Container, tosker.nodes.Volume, and
tosker.nodes.Software, respectively.

• The Container Manager is in charge of implementing the operations to create, start, stop
and delete Docker containers, by also taking into account the different types of artifacts from
which they are generated (viz., Docker images or Dockerfiles — see Sect. 4).
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• The Volume Manager has to implement the operations to create and delete Docker volumes
(as volumes can only be created or deleted, see Sect. 4).

• The Software Manager is in charge of implementing the operations to manage the lifecycle
of the tosker.nodes.Software. The Software Manager supports the Standard lifecycle
interface of TOSCA (which contains the operations create, configure, start, stop and delete a
component), as well as customised interfaces (see Sect. 4).
Notice that, as such a kind of components will be hosted on Docker containers, the actual
execution of a management operation on a component requires to issue commands to
its container. The Software Manager must hence copy all artifacts implementing the
management operations of a software component within its container. This happens whenever
a component needs to leave its initial state by executing a management operation. Copied
artifacts are instead deleted whenever a component executes a management operation leading
it back to its initial state.

Finally, as shown in Fig. 7, each manager implements management operations by instructing the
Docker Interface on which Docker commands to execute.
Docker interface. The Docker Interface is in charge of interacting with the Docker engine
installed on the host where TOSKER is running. It is used by the managers to manage Docker
containers and Docker volumes, and to execute operations inside running containers.

Notice that the Docker Interface decouples TOSKER from the actual Docker engine used,
meaning that it can issue commands to a classic Docker engine (as in the current implementation
of TOSKER— see Sect. 6), but it could also be used to issue commands to an engine capable of
distributing containers in a cluster (e.g., Docker swarm [22] or Kubernetes [38]).

6. PROTOTYPE IMPLEMENTATION OF TOSKER

We have implemented a prototype of TOSKER, which is open-source and publicly available on
GitHub§. The prototype is written in Python¶ and it is published on PyPI (Python Package index).
We hereby illustrate how to use our prototype of TOSKER (Sect. 6.1) and how it actually works
(Sect. 6.2, and we finally draw some concluding remarks on the implementation (Sect. 6.3).

6.1. Using TOSKER

The latest version of TOSKER can be installed on a host by simply executing the command pip
install tosker. TOSKER can then be used as a standard Python library, or as a command line
software by invoking tosker followed by one of the following commands:

• exec, which takes as input a TOSCA specification of an application and a plan, and it
executes the plan on the application topology,

• log, which displays the log of the execution of a given management operation on a given
software component,

• ls, which shows all the components deployed on the host and their current state,

The exec command has the following syntax:

$ tosker exec FILE --plan PLAN [INPUTS]..

where FILE is a CSAR archive or a TOSCA YAML file (containing the specification of a multi-
component application), PLAN is a .plan file with a list of operations to be executed (the format is

§https://github.com/di-unipi-socc/TosKer.
¶The choice of Python was mainly motivated by the availability of two open-source Python libraries: docker-
py (https://github.com/docker/docker-py) and tosca-parser (https://github.com/openstack/
tosca-parser/). docker-py implements a Python interface for the Docker engine API. tosca-parser is instead a
parser for TOSCA application specifications (developed by the OpenStack community).
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thinking.up.plan

1 # c r e a t e t h e DBvolume volume
2 dbvolume : S t a n d a r d . c r e a t e
3
4 # c r e a t e and s t a r t t h e MongoDB c o n t a i n e r
5 mongodb : S t a n d a r d . c r e a t e
6 mongodb : S t a n d a r d . s t a r t
7
8 # c r e a t e and s t a r t t h e Node c o n t a i n e r
9 node : S t a n d a r d . c r e a t e

10 node : S t a n d a r d . s t a r t
11
12 # c r e a t e and s t a r t t h e Maven c o n t a i n e r
13 maven : S t a n d a r d . c r e a t e
14 maven : S t a n d a r d . s t a r t
15
16 # c r e a t e , c o n f i g u r e , p u s h d e f a u l t and s t a r t t h e API s o f t w a r e
17 a p i : S t a n d a r d . c r e a t e
18 a p i : S t a n d a r d . c o n f i g u r e
19 a p i : a p i i n t e r f a c e . p u s h d e f a u l t
20 a p i : S t a n d a r d . s t a r t
21
22 # c r e a t e , c o n f i g u r e and s t a r t t h e GUI s o f t w a r e
23 g u i : S t a n d a r d . c r e a t e
24 g u i : S t a n d a r d . c o n f i g u r e
25 g u i : S t a n d a r d . s t a r t

Figure 8. A plan to start all the components of the Thinking application.

component:interface.operation), INPUTS is an optional sequence of input parameters
to be passed to the TOSCA application‖.

It is also possible to directly execute one or more operations on the topology (instead of providing
a plan):

$ tosker exec FILE OPERATIONS.. [INPUTS]..

where FILE and INPUTS are the same as before, while OPERATIONS is a list of operations in the
format component:interface.operation
Example 4. Consider again the Thinking application in Sect. 3. Suppose that we wish to run all the
components of the application by exploiting the plan in Fig. 8.
We can instruct TOSKER to do so, by executing:

$ tosker exec thinking.csar --plan=thinking.up.plan

TOSKER executes each operation in the plan (as shown in Fig. 9), and an instance of the Thinking
application gets up and running. After the deployment, by executing the command ls we can
visualise the state of the components of the application, as shown in Fig. 10.

Suppose now that we wish to delete the GUI of our running application. We can do it by executing
the command:

$ tosker exec thinking.csar gui:Standard.stop \
gui:Standard.delete

‖Details on how to process inputs for TOSCA applications can be found in [32].
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Figure 9. The output displayed by TOSKER while executing the plan thinking.up.plan for deploying
an instance of Thinking.

Figure 10. The output of the TOSKER ls command after a successful execution of the plan
thinking.up.plan for deploying an instance of Thinking.

The ls command then shows that the component GUI is deleted.

To test the current prototype of TOSKER, we specified the open-source application Thinking in
TOSCA, as well as three other existing applications, viz., (i) a Wordpress instance running on a
PHP web server and connecting to a MySQL back-end, (ii) a NodeJS-based REST API connecting
to a MongoDB back-end, and (iii) an application with three interacting servers written in NodeJS.
All applications were effectively deployed by the current prototype of TOSKER, and they constituted
the basis for developing a battery of unit tests∗∗.

6.2. How TOSKER works

The prototype of TOSKER is composed by a main package (viz., tosker) containing a set of
Python modules and packages implementing the various components forming the architecture of
TOSKER (Fig. 11). The package tosker contains a set of modules and the subpackages graph
and managers. The Python module docker interface.py implements the architecture
module Docker Interface, while orchestrator.py, protocol help.py, storage.py,
tosca parser.py, and ui.py implement Orchestrator, Plan Checker, State Storage,
TOSCA Parser and UI, respectively. The graph sub-package contains the modules that
implement the internal representation of an application specification, viz., artifacts.py,

∗∗The TOSCA application specifications and the battery of unit tests that we implemented are publicly available
on GitHub at https://github.com/di-unipi-socc/TosKer/tree/master/data/examples and
https://github.com/di-unipi-socc/TosKer/tree/master/tests, respectively.
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nodes.py, protocol.py, relationships.py, and template.py. Instead, the sub-
package managers contains the modules container manager.py, volume manager.py,
software manager.py which respectively implements the three managers in the architecture
of TOSKER (Fig. 7).

tosker
graph ...............................................................graph module

artifacts.py ...............................................TOSCA artifacts
nodes.py.......................................................TOSKER nodes
protocols.py............................................management protocol
relationships.py.......................................TOSCA relationships
template.py.........................................TOSCA topology template

managers........................................................managers module
container manager.py.....................................container manager
software manager.py.......................................software manager
volume manager.py..........................................volume manager

docker interface.py...........................................docker interface
orchestrator.py....................................................orchestrator
protocol helper.py................................................plan checker
storage.py.......................................................... state storage
tosca parser.py..................................................TOSCA parser
ui.py................................................................user interface

Figure 11. The code organisation in the current prototype of TOSKER.

The orchestration algorithm implemented in TOSKER supports the management protocols. This
permits implementing ad-hoc management mechanisms for each component by defining a proper
protocol. We indeed developed a default management protocol for each component (viz., Docker
containers, Docker volumes and software components) to model their default behaviour, and we
permit customising the behaviour of software components by means of policies. Default/customised
protocol are then automatically composed by TOSKER, to derive the management behaviour of an
application. We report below some details concerning the implementation of management protocols
in TOSKER.

Management protocols are implemented in TOSKER as directed graphs (graph/protocol.py),
whose nodes represent the states of a component, and whose edges represent the transitions among
such states. TOSKER associates an instance of (a graph representing) a management protocol to
each component of a topology, plus a pointer to the actual state of such component.

Management protocols are first parsed from the TOSCA specification, and then processed to manage
the fact that the orchestration of software components strictly depends on the availability of their
hosting containers. More precisely, two conditions must be enforced:

(i) A container must be running to permit executing a management operation of a software
component hosted on such container, and

(ii) a container can be deleted only if all software components hosted on it are also deleted
(otherwise, deleting a container would also force deleting of the software components hosted
on it).

TOSKER automatically ensures both conditions by transparently extending the (default and
customised) management protocols of Docker containers and software components as follows. To
ensure (i), each transition of the protocols of software components is automatically enriched by
constraining its firing to the satisfaction of the requirement host. As containers are satisfying such
requirement only when running, this forces them to be in such state to allow executing management
operations on the software components they host.
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To ensure (ii), TOSKER artificially adds a requirement alive to all software components, and
a capability alive to all Docker containers and software components. The requirement alive of a
software component is then bound to the capability alive of the node hosting such component.
The purpose of requirements/capabilities alive is to allow to hosting nodes to witness whether they
are still “alive” to the nodes they are hosting††. This is ensured by automatically extending the
management protocols of Docker containers and software components as follows. The capability
alive is offered by both Docker containers and software components in each state but the initial one
(to witness to the node that they are “alive”). The requirement alive is assumed by each software
component in each state but the initial one (to witness that they assume their container to be “alive”
throughout their management lifecycle). In this way, a container can be deleted only if all the
software component hosted on it are in their initial state (viz., deleted).

6.3. Concluding remarks

During the design and development of TOSKER we incurred in a set of problems that could
be interesting also to other researchers and practitioners willing to exploit Docker container as
lightweight virtual hosts for software components.

Docker containers are isolated processes whose lifetime is strictly coupled with that of the main
command they actually execute. We can hence distinguish between containers whose lifetime is
limited (because they run a main command whose execution time is limited), and containers that
continue to run until a stop command is explicitly issued (because their main command is non-
stopping throughout time - e.g., because it is running a service). This distinction was very important
in our case, as we were using containers as virtual hosts, and we had to ensure that such hosts
were continuing to run as long as the software components hosted on them were requiring it. In
TOSKER, we solved this issue by allowing developers to indicate the type of artifacts they are
using to implement a Docker container, viz., tosker.artifacts.Image and tosker.artifacts.Dockerfile
for artifacts implementing containers whose lifetime is limited, and tosker.artifacts.Image.Service
and tosker.artifacts.Dockerfile.Service for artifacts implementing containers that run persistently.
This allows TOSKER to deal with containers whose lifetime is limited, by instructing them to
execute a non-stopping command (viz., sh -c "while true;do sleep 1;done"), hence
ensuring that they will run untile a command to stop them is explicitly issued. Instead, TOSKER
does not change the main command of containers that persistently run, as this could impede them
to offer the service they are running.

Another interesting issue was how to manage multiple software components hosted on the same
container. Docker containers are static entities. They are instances of given images, which are read-
only templates, and which are not thought to be changed at runtime (e.g., by installing, starting or
uninstalling the software components run by corresponding containers). We decided to approach
this issue by exploiting what is naturally supported by Docker, namely volumes and the command
docker exec. TOSKER automatically mounts a dedicated volume on each container used as
virtual host, and it places all artifacts implementing the management operations of the software
components hosted by such container. This allows TOSKER to execute (the artifact implementing) a
management operation of a software component by simply issuing a command docker exec on
the container hosting the component (when such container is running). The latter is automatically
executed by TOSKER whenever it is required to run of a management operation of an application
component. TOSKER also automatically redirects the output of the execution of an operation to a
log file contained in the automatically mounted volume, and it exploits such log to permit checking
what happens when executing management operations on the components forming an application
(through the command tosker log).

††The addition of requirement and capabilites alive was first proposed in [9] to address a similar problem.
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7. TOSKER AT WORK: THE SOCK SHOP CASE STUDY

Sock Shop [39] is an open-source web application that simulates the user-facing part of an
e-commerce website that sells socks. It is a multi-component application intended to aid the
demonstration and testing of solutions and tools supporting such a kind of applications. We hence
exploited it to run a case study on our approach, which we present hereafter.

The Sock Shop application is composed by 14 components, the main ones being the following:

• A Frontend displaying a graphical user interfaces for e-shopping socks.
• A set of pairs of services and databases for storing and managing the catalogue of available

socks (viz., Catalogue and CatalogueDB), the users of the application (viz., Users and
UsersDB), the users’ shopping carts (viz., Carts and CartsDB), and the users’ orders
(viz., Orders and OrdersDB).

• Two services (called Payment and Shipping) for simulating the payment and shipping of
orders.

The Sock Shop application is then completed by three other components, namely Edge Router,
RabbitMQ and Queue Master. The Edge Router redirects user requests to the Frontend. The
RabbitMQ is a message queue that is filled of shipping requests by the Shipping service. The
shipping requests are then consumed by the Queue Master, to simulate the actual shipping of orders.

We first analysed the implementation of Sock Shop in Docker compose, to understand the actual
implementation of its components and how they communicate with each other. From the Docker
compose file, we were only able to partition the Docker containers packaging the components of
Sock Shop in two main classes, viz., the application-specific containers, each packaging a component
implementing some business logic of the Sock Shop application (e.g., Frontend, Catalogue), and the
general purpose containers, implementing a support infrastructure for Sock Shop (e.g., the databases,
the edge router).

We then analysed the Dockerfile of the application-specific containers and we identified the list
of instructions used to build and run the software components they are packaging. We extracted
the sequence of commands allowing to install a software component within a container from
those executed within such container during the building process (viz., from the arguments of
the RUN commands of the corresponding Dockerfile). Similarly, we extracted the sequence of
commands allowing to configure and/or run a software component from those those executed
by the start-up command of its container (viz., from the arguments of the CMD command in the
corresponding Dockerfile). Instead, we built the scripts to stop/delete a software component by
manually determining the sequence of commands needed to revert the effects of those used to
start/create it. (e.g., pkill "/app/catalogue" reverts the effects of /app/catalogue
-port=80).

Additionally, none of the relationships occurring among the components of Sock Shop (viz., the
components with which a component communicates) were described in the Docker compose file.
We had to discover them at runtime, by running an instance of the Sock Shop application and by
inspecting the communications occurring among the containers of such instance.

We then represented the Sock Shop application in TOSCA as displayed in Fig. 12. We modelled all
databases and infrastructure components as nodes of type tosker.nodes.Container, and we exploited
the Docker containers already configured by Weaveworks to actually implement them. We instead
specified the services Frontend, Catalogue, Users, Carts, Orders, Payment and Shipping as nodes
of type tosker.nodes.Software, each of which is hosted on a node of type tosker.nodes.Container
providing the runtime environment it needs (e.g., as Frontend requires NodeJS, it is hosted on a
container implemented with the Docker image node:6).

It is worth noting that the TOSCA-based representation of Sock Shop in Fig. 12 is not the
only one possible. For instance, TOSKER can support also the specification where components
are not decoupled from their Docker containers (in the same way as Docker compose does), or
a specification where more components have been extracted and decoupled from their hosting
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Figure 12. Our representation of Sock Shop in TOSCA, with the types defined in Sect. 4.

containers (e.g., the hosting stack of the Frontend may include three components, viz., the Frontend,
which is hosted on a NodeJS runtime, which is in turn hosted on a container ubuntu).

Decoupling software components from the Docker containers hosting them allows TOSKER to
independently manage them. Both software components and Docker containers can have their own
requirements and capabilities, which will be interconnected to influence the order in which they have
to be orchestrated. Additionally, decoupling of a software component from its hosting container
permits easily changing the actual implementation of the Docker container without modifying the
description nor the implementation of the software component [12]. Finally, by decoupling software
components from their hosting containers, it is easier to customise the management lifecycle of such
software components (e.g., by attaching them an ad-hoc management protocol).

It is also worth noting that in the TOSCA-based specification of Sock Shop all interconnections
between its components are explicitly represented (as typed relationships). This is very useful
not only for the orchestration per se, but also to implement statically/dynamically analysing the
communications among components both at design-time and at run-time.

We implemented the operations to install, configure, start, stop and uninstall the above mentioned
services each with a different shell script. For each service, the shell script install.sh installs
the service in a dedicated folder of its host, by cloning the GitHub repository containing its
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sources within such folder and by compiling (if needed) such sources. The script configure.sh
configures the endpoints to be offered by the service. The scripts start.sh and stop.sh start
and kill the process corresponding to the service, respectively. The script uninstall.sh deletes
the folder containing the service installation.

We built a CSAR archive file (containing the TOSCA specification and the management scripts)
and two management plans (viz., sockshop.up.plan to get the application running and
sockshop.down.plan to tear it down)‡‡.

We passed the obtained specification and a the sockshop.up.plan as input to TOSKER, by
executing the following command:

$ tosker exec sockshop.csar --plan sockshop.up.plan

This effectively resulted in obtaining a running instance of the Sock Shop application. We then
verified that the obtained instance of Sock Shop was working by successfully executed a set of
tests orders (as suggested in [39]). We finally executed the plan sockshop.down.plan, which
successfully resulted in undeploying the instance of Sock Shop.

8. RELATED WORK

In the following, we position TOSKER with respect to other currently available solutions for
orchestrating the management of multi-component applications with Docker and/or TOSCA.

8.1. Docker-based orchestration

Docker natively supports multi-container Docker applications with Docker compose [20]. Docker
compose permits specifying the (images of) containers forming an application, the virtual network
to be set between such containers, and the volumes to be mounted. Based on that, Docker compose
is capable of deploying the specified application. However, Docker compose treats containers as
black-boxes, meaning that there is no information on which components are hosted by a container,
and that it is not possible to orchestrate the management of application components separately from
that of their containers. We showed a concrete example of this in Sect. 7, where we illustrated how
Docker compose files do not allow to explicitly indicate the components forming an application (but
only the black-box containers that package them), hence not allowing to represent the relationships
occurring among such components. TOSKER instead permits modelling and orchestrating the
software components independently from the container that host them, and to explicitly indicate
the different types of relationships occurring among such components. This not only makes the
interactions occurring among the components of an application easier to understand, but also
brings various advantages (at the price of requiring developers to specify more information),
e.g., simplifying the update of the container used to host a component, as we illustrated in [12].

Other approaches worth mentioning are Docker swarm [22], Kubernetes [38], and Mesos [3].
Docker swarm permits creating a cluster of replicas of a Docker container, and seamlessly managing
it on a cluster of hosts. Kubernetes and Mesos instead permit automating the deployment, scaling,
and management of containerised applications over clusters of hosts. Docker swarm, Kubernetes and
Mesos differ from TOSKER as they focus on how to schedule and manage containers on clusters of
hosts, rather than on how to orchestrate the management of the components and containers forming
multi-component applications.

Similar considerations apply to ContainerCloudSim [35], which provides support for
modelling and simulating containerised computing environments. ContainerCloudSim is based on
CloudSim [15], and it focuses on evaluating resource management techniques, such as container
scheduling, placement and consolidation of containers in a data center, by abstracting from the
application components actually running in such containers. Our solution instead focuses on

‡‡The TOSCA specification, the scripts, the CSAR file and the plans are all avaible at https://github.com/
di-unipi-socc/TosKer/tree/master/data/examples/sockshop-app.
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allowing to independently orchestrate the components forming an application and the containers
used to host them.

8.2. TOSCA-based orchestration

A first attempt to synergically combine TOSCA and Docker has been proposed in [28], which
presents an approach for using TOSCA for specifying the internals of a container. [28] then requires
the user to manually build containers, which can then be orchestrated (as black-boxes) on Mesos.
TOSKER instead permits orchestrating software components directly and independently from their
hosting containers, as it automatically places a software component within its container and since it
executes management operations directly on a component.

Other approaches worth mentioning are OpenTOSCA [6] SeaClouds [10], Brooklyn [2], Alien-
4Cloud [24], Cloudify [26], and ARIA TOSCA [4]. OpenTOSCA [6] is an open-source engine
for deploying and managing TOSCA applications. It is designed to work with a former, XML-
based version of TOSCA [30] and it supports the orchestration of Docker containers as black-
boxes (viz., it does not permit orchestrating application components independently of the containers
hosting them). TOSKER differs from OpenTOSCA since it works with the newer, YAML-based
version of TOSCA [32], and since it permits orchestrating the software components of an application
separately from the Docker containers used to host them.

SeaClouds [10] is a middleware solution for deploying and managing multi-component
applications on heterogenous IaaS/PaaS clouds. SeaClouds fully supports TOSCA, but it lacks
a support for Docker containers. The latter makes SeaClouds not suitable to orchestrate the
management of multi-component applications including Docker containers.

Brooklyn [2] instead natively supports Docker containers. Thanks to its extension called
“Brooklyn-TOSCA” [16], Brooklyn enables the orchestration of the management of the software
components and Docker containers forming cloud application. However, Brooklyn treats Docker
containers as black-boxes, and this does not permit orchestrating the management of the components
of an application independently of that of the containers used to host them.

Alien4Cloud [24], Cloudify [26], and ARIA TOSCA [4] also permit orchestrating the
management of the software components and Docker containers forming cloud applications. They
however all differ from TOSKER because they treat Docker containers as black-boxes (hence not
permitting to orchestrate the management of application components separately from that of the
containers hosting them).

Brooklyn [2] and Cloudify [26] also differ from TOSKER as they require to specify applications
in non-standard blueprint languages (inspired to, but not fully compliant with, the OASIS standards
CAMP [31] and TOSCA [31], respectively). For instance, a relationship is specified in TOSCA by
connecting a requirement of one component to a capability of another, and requirements/capabilities
can be used to express interconnection constraints (which then permit validating TOSCA application
topologies [11]). Cloudify blueprints instead do not include any notion of requirements or
capabilities, as relationships just connect a source node to a target node.

Additionally, all the above mentioned approaches differ from TOSKER because they do not
provide a way to customise the management behaviour of the components forming a TOSCA
application (e.g., even if some management operation can be added to a TOSCA node type, it is
not possible to declaratively indicate when/how to invoke it throughout the management lifecycle
of instances of such type). TOSKER instead permits customising the management behaviour of the
components of a TOSCA application, by supporting the definition of management protocols that
indicate how to orchestrate the components’ management operations.

8.3. Summary

To the best of our knowledge, ours is the first solution that permits specifying and orchestrating
multi-component applications with TOSCA and Docker both (i) by allowing to customise the
management behaviour of the software components forming an application, and (ii) by managing
such components independently of the containers hosting them.
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9. CONCLUSIONS

The OASIS standard TOSCA [32] and the Docker ecosystem [19] are two emerging solutions
trying to address, from different perspectives, the problem of automating the management of
multi-component applications over heterogeneous cloud infrastructures. While TOSCA follows a
model-driven approach, Docker follows a “snapshot-based” approach. Of course, both approaches
have their own pros and cons, and the objective of this paper was to propose a solution trying to
synergically combine the pros of both approaches.

We indeed illustrated a way to employ TOSCA and Docker together to orchestrate the
management of multi-component applications. More precisely, we proposed a TOSCA-based
representation for multi-component applications, which permits (i) distinguishing the Docker
containers and software components in a multi-component application, (ii) indicating the
relationships occurring among them, and (iii) customising their management behaviour through
management protocols [7]. We also presented TOSKER, an orchestration engine for automatically
deploying and managing multi-component applications based on TOSCA and Docker. We finally
showed how our approach can be used to fruitfully orchestrate the management of multi-component
applications by means of a concrete case study (based on a third-party application).

The current prototype of TOSKER can already be exploited (as is) by researchers and practitioners
to orchestrate multi-component applications. Such prototype, as well as the proposed TOSCA-based
type system, can also be extended to support the orchestration of other types of components. The
latter can be done by defining the TOSCA types for representing such components, and by plugging
into the modular architecture of TOSKER the corresponding type managers.

The current prototype of TOSKER can also be exploited as the foundations for the development
of other research solutions or tools, as we did in [12], for instance. [12] presents TOSKERISER,
a tool that is capable of automatically determining the Docker containers used to host the
components forming an application. With TOSKERISER, developers can only specify the software
components forming an application, each together with the software distributions it needs to run.
Obtained (incomplete) specifications can then be passed to TOSKERISER, which interacts with
DOCKERANALYSER [13] to search for Docker containers, and which automatically completes
them with Docker containers offering the software support needed by the application components.
Completed specification can then be effectively orchestrated by TOSKER.

It is worth nothing that the current prototype of TOSKER is intended to be a demonstrator of a
research result, namely to prototype a solution that tries to synergically combine the pros of both
TOSCA and Docker. For this reason, TOSKER it is not yet ready for production environments, as it
will need further engineering of the tool, as well as further validation and test of its functionalities.
Such engineering, validation and test activities are left for future work.

It is also worth noting that the current prototype of TOSKER interacts with the Docker
engine installed on a host to actually enact the deployment and orchestration of multi-component
applications. This means that all the containers running the components of an application reside
on the same host. As part of our future work, we plan to allow TOSKER to deploy and orchestrate
the multi-component application over clusters of hosts. Such an extension can be implemented by
allowing multiple interacting instances of TOSKER to run on different hosts, in a “master-slave”
manner (similarly to Docker Swarm [22], for instance). Master instances of TOSKER coordinate
and schedule the deployment of the components of an application over a set of hosts, where slave
instances are running. The latters receive commands from the master instances, and they enact the
concrete management operations by interacting with the infrastructure where they are running. The
above described distributed version of TOSKER can concretely be obtained and deployed on top
of existing cluster management systems (e.g., Kubernetes [38] or Mesos [3]), or on more advanced
container-based orchestration solutions (e.g., Fargate [1]).

Furthermore, the current prototype of TOSKER permits orchestrating the management of
multi-component applications through already developed management plans. The integration of
TOSKER with an existing solution for automatically determining management plans reaching given
management goals (e.g., [8], [9] or [18]) is also in the scope of our future work. This would indeed
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allow providing TOSKER only with the desired configuration of a given application, and it would
be TOSKER that automatically determines the plan reaching such configuration.
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