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Abstract

Cloud applications typically integrate multiple components, each needing a virtualised
runtime environment that provides the required software support (e.g., operating sys-
tem, libraries). This paper shows how TOSCA and Docker can effectively support the
orchestration of multi-component applications, even when their runtime specification is
incomplete. More precisely, we first introduce a TOSCA-based representation of multi-
component applications, and we illustrate how such representation can be exploited to
specify only the application-specific components. We then present TosKeriser, a tool
for automatically completing TOSCA application specifications, which can automati-
cally discover the Docker-based runtime environments that provide the software support
needed by the application components. We also show how we fruitfully exploited TosKe-
riser in two concrete case studies. Finally, we discuss how the specifications completed
by TosKeriser can be automatically orchestrated by already existing TOSCA engines.
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1. Introduction

Cloud computing permits running on-demand distributed applications at a fraction of
the cost which was necessary just a few years ago [2]. This has revolutionised the way
applications are built in the IT industry, where monoliths are giving way to distributed,
component-based architectures. Modern cloud applications typically consist of multiple
interacting components, which (compared to monoliths) permit better capitalising the
benefits of cloud computing [11].

At the same time, the need for orchestrating the management of multi-component
applications across heterogeneous cloud platforms has emerged [4, 17]. The deployment,
configuration, enactment and termination of the components forming an application
must be suitably orchestrated. This must be done by considering all the dependencies
occurring among the components forming an application, as well as the fact that each
application component must run in a virtualised environment providing the software
support it needs [13].

Developers and operators are currently required to manually select and configure
an appropriate runtime environment for each application component, and to explicitly
describe how to orchestrate such components on top of the selected environments [19]. As
we discuss in Sect. 2, such process must then be manually repeated whenever a developer
wishes to modify the virtual environment actually used to run an application component,
e.g., because the latter has been updated and it now needs additional software support.
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The current support for developing cloud applications should be enhanced. In particular,
developers should be required to describe only the components forming an application,
the dependencies occurring among such components, and the software support needed
by each component [3]. Such description should be fed to tools capable of automati-
cally selecting and configuring an appropriate runtime environment for each application
component, and of automatically orchestrating the application management on top of
the selected runtime environments. Such tools should also allow developers to change
the virtual environment running an application component whenever they wish (e.g., by
automatically replacing a previously selected environment with another satisfying the
new/updated requirements of an application component).

In this paper, we present a solution geared towards providing such an enhanced sup-
port. Our solution is based on TOSCA [22], the OASIS standard for orchestrating cloud
applications, and on Docker, the de-facto standard for cloud container virtualisation [24].
The main contributions of this paper are indeed the following:

• We propose a TOSCA-based representation for multi-component applications, which
can be used to specify the components forming an application, the dependencies
occurring among them, and the software support that each component requires to
effectively run.

• We present TosKeriser, a tool that automatically completes TOSCA application
specifications, by discovering and including Docker-based runtime environments
providing the software support needed by the application components. The tool
also permits changing –when/if needed– the runtime environment used to host a
component.

The obtained application specifications can then be processed by orchestration engines
supporting TOSCA and Docker (such as TosKer [7], for instance). Such engines will
automatically orchestrate the deployment and management of the corresponding appli-
cations on top of the given runtime environments.

This paper extends [5] by (a) extending the approach of [5] to permit hosting groups of
software components on the same Docker container, by (b) providing a detailed descrip-
tion of the implementation of TosKeriser, and by (c) presenting two novel case studies
comparing the orchestration of the management of applications with and without our
solution (based on three KPIs) and illustrating the usefulness of groups.

The rest of the paper is organised as follows. Sect. 2 illustrates an example further
motivating the need for an enhanced support for orchestrating the management of cloud
applications. Sect. 3 provides some background on TOSCA and Docker. Sect. 4 shows
how to specify application-specific components only, with TOSCA. Sect. 5 then presents
our tool to automatically determine appropriate Docker-based environments for hosting
the components of an application. Sect. 6 illustrates the two case studies, while Sects. 7
and 8 discuss related work and draw some concluding remarks, respectively.



2 MOTIVATING SCENARIO 3

Figure 1: Running example: The application Thinking.

2. Motivating scenario

Consider the open-source web-based application Thinking1, which allows its users to
share their thoughts, so that all other users can read them. Thinking is composed by
three interconnected components (Fig. 1), namely (i) a MongoDB storing the collection
of thoughts shared by end-users, (ii) a Java-based REST API to remotely access the
database of shared thoughts, and (iii) a web-based GUI visualising all shared thoughts
and allowing to insert new thoughts into the database. As indicated in the documentation
of the Thinking application:

(i) The MongoDB component can be obtained by directly instantiating a standalone
Docker-based service, such as mongo2, for instance.

(ii) The API component must be hosted on a virtualised environment supporting maven
(version 3), java (version 1.8) and git (any version). The API must also be connected
to the MongoDB.

(iii) The GUI component must be hosted on a virtualised environment supporting nodejs
(version 6), npm (version 3) and git (any version). The GUI also depends on the
availability of the API to properly work (as it sends GET/POST requests to the
API to retrieve/add shared thoughts).

Docker containers work as virtualised environments for running application compo-
nents [24]. However, we currently have to manually look for the Docker containers
offering the software support needed by API and GUI (or to manually extend existing
containers to include such support). We then have to manually package the API and GUI
components within such Docker containers, and to explicitly describe the orchestration
of the management of all the Docker containers in our application. In other words, we
must identify, develop, configure and orchestrate the deployment and management of all
components in Fig. 1, including those not specific to the Thinking application (viz., the
lighter nodes API RTE and GUI RTE).

The above process must be manually repeated whenever we wish to change the Docker
containers used to run the components of Thinking. Suppose, for instance, that we wish
to host GUI and API on the same container. We should remove their containers from the

1https://github.com/di-unipi-socc/thinking.
2https://hub.docker.com/_/mongo/.

https://github.com/di-unipi-socc/thinking
https://hub.docker.com/_/mongo/
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application, we should manually look for a new container providing the software support
needed by both components, and we should re-describe — possibly from scratch — the
orchestration of GUI and API on the newly added container.

Especially in the latter case, our effort would be lower if we were provided with a
support requiring us to describe our application only, and automating all remaining tasks.
More precisely, we should only be required to specify the thicker nodes and dependencies
in Fig. 1. The support should then be able to automatically complete our specification,
and to exploit the obtained specification to automatically orchestrate the deployment
and management of the Thinking application. In this paper, we show a TOSCA-based
solution geared towards providing such a support.

3. Background

3.1. TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications [22]) is an
OASIS standard whose main goals are to enable (i) the specification of portable cloud
applications and (ii) the automation of their deployment and management. TOSCA pro-
vides a YAML-based and machine-readable modelling language that permits describing
cloud applications. Obtained specifications can then be processed to automate the de-
ployment and management of the specified applications. We hereby report only those
features of the TOSCA modelling language that are used in this paper3.

Figure 2: The TOSCA metamodel [22].

TOSCA permits specifying a cloud application as a service template, which is in turn
composed by a topology template, and by the types needed to build such a topology
template (Fig. 2). The topology template is essentially a typed directed graph, which
describes the topological structure of a multi-component cloud application. Its nodes
(called node templates) model the application components, while its edges (called rela-
tionship templates) model the relations occurring among such components.

3A more detailed, self-contained introduction to TOSCA can be found in [3, 10].
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Node templates and relationship templates are typed by means of node types and
relationship types, respectively. A node type defines the observable properties of a com-
ponent, its possible requirements, the capabilities it may offer to satisfy other compo-
nents’ requirements, and the interfaces through which it offers its management opera-
tions. Requirements and capabilities are also typed, to permit specifying the properties
characterising them. A relationship type instead describes the observable properties of
a relationship occurring between two application components. As the TOSCA type sys-
tem supports inheritance, a node/relationship type can be defined by extending another,
hence permitting the former to inherit the latter’s properties, requirements, capabilities,
interfaces, and operations (if any).

Node templates can also be logically grouped, typically to define groups of nodes to
be managed together, and/or to uniformly apply the same management policy to all the
nodes forming a group (e.g., placing all nodes in a group on the same host, simultaneously
scaling all the nodes forming of a group). A TOSCA group represents a logical grouping
of node templates that need to be orchestrated together to achieve some management
goal. As such goals can be many, the actual purpose of each group is specified by means
of its group type.

To concretely realise the deployment and management of the nodes forming an ap-
plication, node templates and relationship templates also specify the artifacts needed to
actually perform their deployment or to implement their management operations. As
TOSCA allows artifacts to represent contents of any type (e.g., scripts, executables, im-
ages, configuration files, etc.), the metadata needed to properly access and process them
is described by means of artifact types.

TOSCA applications are then packaged and distributed in so-called CSARs (Cloud
Service ARchives). A CSAR is essentially a zip archive containing an application spec-
ification along with the concrete artifacts realising the deployment and management
operations of its components.

3.2. Docker

Docker (https://docker.com) is a Linux-based platform for developing, shipping, and
running applications through container-based virtualisation. Container-based virtualisa-
tion [27] exploits the kernel of the operating system of a host to run multiple isolated
user-space instances, called containers.

Each Docker container packages the applications to run, along with whatever software
support they need (e.g., libraries, binaries, etc.). Containers are built by instantiating
so-called Docker images, which can be seen as read-only templates providing all instruc-
tions needed for creating and configuring a container. Docker images can be created
by developing Dockerfiles, which contain all the commands to be executed to create an
image (e.g., installing the needed support, setting the main process to run). Existing
Docker images are distributed through so-called Docker registries (e.g., Docker Hub —
https://hub.docker.com), and new images can be built by extending existing ones.

Docker containers are volatile, and the data produced by a container is (by default)
lost when the container is stopped. This is why Docker introduces volumes, which are
specially-designated directories (within one or more containers) whose purpose is to per-
sist data, independently of the lifecycle of the containers mounting them. Docker never
automatically deletes volumes when a container is removed, nor does it remove volumes
that are no longer referenced by any container.

https://docker.com
https://hub.docker.com
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Docker also allows containers to intercommunicate, by creating virtual networks,
which span from bridge networks (for single hosts), to complex overlay networks (for clus-
ters of hosts). Docker also provides built-in orchestration tools, such as Docker Compose
(https://docs.docker.com/compose/), which permits creating multi-container Docker
applications, and managing them on a single host or in a cluster of hosts4.

4. Specifying applications only, with TOSCA

Multi-component applications typically integrate various and heterogeneous software
components [13]. We hereby propose a TOSCA-based representation for such compo-
nents (Sect. 4.1). We also illustrate how it can be used to specify only the components
that are specific to an application, and to constrain the Docker containers that can be
used to actually host such components (Sect. 4.2).

4.1. A TOSCA-based representation for applications

We first define three different TOSCA node types5 to distinguish Docker containers,
Docker volumes, and software components that can be used to build a multi-component
application (Fig. 3).

tosker.nodes.Container permits representing Docker containers, by indicating whether
a container requires a connection (to another Docker container or to an application
component), whether it has a generic dependency on another node in the topology,
or whether it needs some persistent storage (hence requiring to be attached to a
Docker volume). tosker.nodes.Container also permits indicating whether a con-
tainer can host an application component, whether it offers an endpoint where to
connect to, or whether it offers a generic feature (to satisfy a generic dependency
requirement of another container or application component). It also lists the oper-
ations to manage a container (which correspond to the basic operations offered by
Docker [18]).

To complete the description, tosker.nodes.Container provides placeholder prop-
erties for specifying port mappings (ports) and the environment variables (env vari-
ables) to be configured in a running instance of the corresponding Docker container.
It also provides two properties (supported sw and os distribution) for indicating the
software support provided by the corresponding Docker container and the operating
system distribution it runs.

The above listed elements are all optional, viz., node templates of type tos-
ker.nodes.Container can optionally instantiate/implement them. Additionally, re-
quirements and capabilities can be instantiated multiple times in a node of type
tosker.nodes.Container (e.g., if a container requires two distinct connections to two
different components, two requirements connection have to be instantiated).

4A more detailed introduction to Docker can be found in [18, 25].
5Their actual TOSCA definition is publicly available at https://github.com/di-unipi-socc/

tosker-types.

https://docs.docker.com/compose/
https://github.com/di-unipi-socc/tosker-types
https://github.com/di-unipi-socc/tosker-types


4 SPECIFYING APPLICATIONS ONLY, WITH TOSCA 7

Figure 3: TOSCA node types for multi-component, Docker-based applications, viz., tosker.nodes.Con-
tainer, tosker.nodes.Software, and tosker.nodes.Volume.

tosker.nodes.Volume permits specifying Docker volumes, and it defines an optional
capability attachment to indicate that a Docker volume can be used to satisfy the
storage requirements of Docker containers. It also lists the operations to manage
a Docker volume (which corresponds to the basic operations offered by the Docker
platform [18]).

tosker.nodes.Software permits describing the software components forming a multi-
component application. It permits specifying whether an application component
requires a connection (to a Docker container or to another application component),
whether it has a generic dependency on another node in the topology, and that it
has to be hosted on a Docker container or on another component tosker.nodes.Soft-
ware also permits indicating whether an application component can host another
component, whether it provides an endpoint where to connect to, or whether it offers
some feature (to satisfy a generic dependency requirement of a container/application
component). Finally, tosker.nodes.Software indicates the operations to manage an
application component (viz., create, configure, start, stop, delete).

All above listed elements are optional, as node templates of type tosker.no-
des.Software can optionally instantiate them. Requirements and capabilities can
also be instantiate multiple times in a node of type tosker.nodes.Software (e.g., two
instances of the requirement connection permits indicating that a component re-
quires two distinct connections to two different components).

The interconnections and interdependencies among the nodes forming a multi-component
application can then be indicated by exploiting the TOSCA normative relationship
types [22]. Namely, tosca.relationships.AttachesTo can be used to attach a Docker vol-
ume to a Docker container, tosca.relationships.ConnectsTo can indicate interconnections
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Figure 4: A specification of our running example in TOSCA (where nodes are typed with tos-
ker.nodes.Container, tosker.nodes.Volume, or tosker.nodes.Software, while relationships are typed with
TOSCA normative types [22]).

between Docker containers and/or application components, tosca.relationships.HostedOn
can be used to indicate that an application component is hosted on another component
or on a Docker container, and tosca.relationships.DependsOn can be used to indicate
generic dependencies between the nodes of a multi-component application6.

4.2. Specifying application-specific components only

The TOSCA types introduced in the previous section can be used to specify the topology
of a multi-component application. We hereby illustrate, by means of an example, how to
specify in TOSCA only the fragment of a topology that is specific to an application (by
also constraining the Docker containers that can be used to actually host the components
in such fragment).

Example 1. Consider again the application Thinking in our motivating scenario (Sect. 2).
The components specific to Thinking (viz., MongoDB, API, and GUI) can be specified
in TOSCA as illustrated in Fig. 4:

• MongoDB is obtained by directly instantiating a Docker container mongo (modelled
as a node of type tosker.nodes.Container). The latter is attached to a Docker
volume where the shared thoughts will be persistently stored.

• API is a software component (viz., a node of type tosker.nodes.Software). API
requires to be connected to the back-end MongoDB, to remotely access the database
of shared thoughts.

• GUI is a software component (viz., a node of type tosker.nodes.Software). GUI
depends on the availability of API to properly work (as it sends HTTP requests to
the API to retrieve/add shared thoughts).

6The TOSCA specification [22] explains how to validly instantiate normative relationship types.
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node_filter:

type: tosker.nodes.Container

properties:

- supported_sw:

- mvn: 3.x

- java: 1.8.x

- git: x

- ports:

- 8080: 8000

- os_distribution: ubuntu

node_filter:

type: tosker.nodes.Container

properties:

- supported_sw:

- node: 6.x

- npm: 3.x

- git: x

- ports:

- 3000: 8080

(a) (b)

Figure 5: Constraints on the Docker containers that can effectively run the software components (a)
API and (b) GUI (specified within their requirements host).

Please note that the requirements host of both API and GUI are left pending (viz., there
is no node satisfying them). This is because the actual runtime environment of API and
GUI is not specific to the application Thinking, and it should be automatically determined
among the many possible (as we will discuss in Sect. 5). The only effort required to the
developer is to specify constraints on the configuration of the Docker containers that can
effectively host API and GUI (e.g., which software support they have to provide, which
operating system distribution they must run, which port mappings they must expose,
etc.).

TOSCA natively supports the possibility of expressing constraints on the nodes that
can satisfy requirements left pending [22], through the clause node filter that can be
indicated within a requirement. node filter permits specifying the type of a node that
can satisfy a requirement, and it permits constraining the properties of such node.

We can hence exploit node filter to indicate that the software components in an
application must be hosted on Docker containers (viz., on nodes of type tosker.nodes.Con-
tainer). We can also indicate constraints to configure such containers (e.g., which port
mappings they must expose, or which environment variables they should define), to
define the operating system distribution they must run, and to indicate the software
distributions they must support. The latter can be indicated with pairs name: version,
where version indicates the prefix number of the desired software version followed by an
x (e.g., java: 1.8.x is an alias for all versions of java starting with 1.8).

Example 2. Consider again the multi-component application Thinking, modelled in TO-
SCA as in Fig. 4. The pending requirements host of API and GUI must constrain the
nodes that can actually satisfy them.

The requirement host of API can express the constraints on the Docker containers that
can effectively host it with the node filter in Fig. 5.(a). The latter indicates that API
needs to run on a Docker container, viz., a node of type tosker.nodes.Container, which
supports maven (version 3), java (version 1.8) and git (any version). It also indicates a
port mapping to be configured in the hosting container and that such container must be
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based on an Ubuntu distribution7.
Analogously, the requirement host of GUI can constrain the Docker containers for

hosting it with the node filter in Fig. 5.(b). The latter prescribes that GUI must
run on a Docker container supporting node (version 6), npm (version 3) and git (any
version). It also requires the hosting container to expose the indicated port mapping.
The obtained (incomplete) TOSCA specification is publicly available on GitHub8.

4.3. Specifying groups of components to be hosted on the same container

An application developer may also wish to group some of the components forming her
application, and to host all the nodes forming a group in the same container. This
would allow, for instance, to reduce the network traffic produced by the components of
an application.

TOSCA natively permits grouping the nodes forming an application in groups, and
it allows specifying the actual purpose of each group by means of its type [22]. We hence
defined a new group type tosker.groups.DeploymentUnit, whose purpose is precisely to
indicate that the nodes it contains must all be hosted on the same container. Given the
nature of tosker.groups.DeploymentUnit, the following conditions must be satisfied while
defining a group of such type:

(i) A group of type tosker.groups.DeploymentUnit can only contain nodes of type tos-
ker.nodes.Software.

(ii) If the requirement host of a node within a group of type tosker.groups.Deployment-
Unit is satisfied, then such requirement must be satisfied by another node within
the same group or by a node of type tosker.nodes.Container.

(iii) If a node within a group of type tosker.groups.DeploymentUnit satisfies the require-
ment host of another node, then the latter node must be part of the same group.

(iv) The groups of type tosker.groups.DeploymentUnit in a TOSCA application spec-
ification must be all disjoint (viz., a node cannot be simultaneously part of two
different groups).

The first condition is due to the fact that, according to Sect. 4.1, nodes of type tosker.no-
des.Software can be hosted on other nodes, while tosker.nodes.Container and tosker.no-
des.Volume cannot be hosted on other nodes. The second, third and last conditions
instead ensure that, whenever a software component is hosted on another software com-
ponent, then both components are deployed within the same Docker container.

Example 3. Consider again the application Thinking in our motivating scenario (Sect. 2).
Example 1 showed how to specify the components forming such application in TOSCA,
while Example 2 illustrated how to indicate constraints on the Docker containers that
can effectively run its software components API and GUI.

7Constraining the operating system distribution is particularly useful when the artifacts implementing
the management operations of a software component require to perform distribution-specific system calls
(e.g., a .sh script performing a command apt-get, which is supported only in Debian-based distributions).

8https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/

thinking/thinking.yaml.

https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking/thinking.yaml
https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking/thinking.yaml
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Figure 6: A specification of our running example in TOSCA, including a group (of type tosker.gro-
ups.DeploymentUnit) specifying that API and GUI must be hosted by the same Docker container.

Suppose now that we wish to host both API and GUI on the same container. This
can be constrained by just indicating that API and GUI form a group of type tosker.gro-
ups.DeploymentUnit (Fig. 6 — the corresponding TOSCA specification is publicly avail-
able on GitHub9). The tool used to complete the specification of Thinking will then have
to automatically determine a Docker container capable of satisfying the requirements
host of both API and GUI (Fig. 5).

5. Completing TOSCA specifications, with Docker

We hereby present TosKeriser, an open-source prototype tool10 that automatically
completes “incomplete” TOSCA application specifications (describing only application-
specific components, and indicating constraints on the Docker containers that can be
used to host such components — as discussed in the previous section).

TosKeriser is part of an open-source toolchain allowing to orchestrate multi-com-
ponent applications with TOSCA and Docker (Fig. 7). TosKeriser inputs a CSAR file
containing a TOSCA application specification. It then identifies the set of software com-
ponents whose requirement host has to be fulfilled, and it exploits DockerFinder11 to
identify the Docker containers providing the support needed by such components. Tos-
Keriser then completes the application topology by properly including the discovered

9https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/

thinking_group/thinking_group.yaml.
10The Python sources of TosKeriser are publicly available on GitHub at https://github.com/

di-unipi-socc/toskeriser (under MIT license). TosKeriser is also available on PyPI, and it can
be directly installed on Linux hosts by executing the command pip install toskeriser.

11DockerFinder [6] is a tool allowing to search for Docker containers based on multiple attributes,
including the distributions of software they support and the operating system they are based on.

https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking_group/thinking_group.yaml
https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking_group/thinking_group.yaml
https://github.com/di-unipi-socc/toskeriser
https://github.com/di-unipi-socc/toskeriser
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Figure 7: Open-source toolchain for orchestrating multi-component applications with TOSCA and
Docker.

Figure 8: BPMN modelling of the process that TosKeriser performs to automatically complete TOSCA
application specifications.

containers, and it outputs the resulting CSAR file. Such file can then be passed to Tos-
Ker [7] (or to any other orchestration engine offering the needed support for TOSCA
and Docker), which will automatically deploy and manage the actual instances of the
specified application.

We hereafter first detail how TosKeriser concretely proceeds for automatically com-
pleting TOSCA application specifications (Sect. 5.1), and we then show how to use Tos-
Keriser in practice (Sect. 5.2).

5.1. How TosKeriser completes applications, concretely

TosKeriser completes TOSCA application specifications according to the workflow
illustrated in Fig. 8.

Parsing. TosKeriser initially parses and validates the TOSCA application specifi-
cation contained in the CSAR given as input. More precisely, the step Parsing first
exploits the OpenStack TOSCA parser library [23] to check whether the specification is
syntactically correct. If this is not the case, the parser generates an error report, which
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is then returned by TosKeriser. Otherwise, it generates an internal representation of
the input specification, which is passed to the step Validation.

Validation. The step Validation type-checks the (internal representation of the) TOSCA
application specification, by verifying the following three conditions:

(v1) The property constraints expressed in the node filter clause of each node are not
conflicting one another (viz., by requiring different versions of the same software
distribution, by defining different mappings for the same port, or by defining twice
an environment variable),

(v2) the constraints on operating system and on software distributions are defined by
using names of operating systems and software distributions that are actually sup-
ported by TosKeriser12, and

(v3) the groups of type tosker.groups.DeploymentUnit do not violate the four conditions
listed in Sect. 4.3.

If at least one out of the conditions v1, v2 or v3 does not hold, then TosKeriser stops
by returning an appropriate error message. Otherwise, the application specification is
passed to the step Filtering.

Filtering. The step Filtering scans the application specification to identify the nodes
that have to be hosted on automatically discovered Docker containers. A node needs
to be hosted on an automatically discovered Docker container if it satisfies all following
conditions:

(f1) It is of type tosker.nodes.Software,

(f2) it is not hosted on another node of type tosker.nodes.Software, and

(f3) its requirement host is not satisfied (viz., it is not connected to any container), or it
is part of a group where there exists a node whose requirement host is not satisfied.

The result of the step Filtering is a set of pairs 〈nodes, conds〉, where nodes is a set of
nodes13, and where conds is a multi-set containing the sets of hosting constraints specified
by the nodes in nodes (viz., each element of conds is a set of constraints specified within
the requirement host of a node in nodes). The set of pairs 〈nodes, conds〉 is then passed
to the step Merge.

Merge. For each pair 〈nodes, conds〉, the step Merge merges the constraints specified by
the sets in conds in a single set of mergedConds (which will have to be satisfied by the
automatically discovered Docker container used to host the corresponding nodes).

Given a pair 〈nodes, conds〉, the step Merge first checks whether two distinct sets
in conds impose conflicting constraints (viz., they require different versions of the same
software distribution, different operating system distributions, different mappings for the

12All names of software distributions currently supported by TosKeriser can be displayed by running
the command line instruction toskerise --supported sw.

13If a node is not part of a group, then nodes will be the singleton set containing only such node. If a
node is instead part of a group, then nodes will be the set of the nodes that are members of such group.
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same port, or different values for the same environment variable). If this is not the case,
Merge proceeds in merging the sets of constraints in conds in a single set mergedConds.
The latter is essentially the set union of all sets in conds. The only exception is on version
matching of software distributions, as multiple compatible constraints on the version of
a same software distribution result in keeping the most stringent constraint (e.g., the
constraints java:1.x, java:1.8.x and java:1.8.4 result in keeping only the constraint
java:1.8.4).

The result of the step Merge is a set of pairs 〈nodes,mergedConds〉, which is passed
to the step Best-effort adaptation.

Best-effort adaptation. The purpose of the step Best-effort adaptation is to actually
enact the completion of the TOSCA application specification, by first trying to determine
suitable Docker container for each of the pairs 〈nodes,mergedConds〉 (viz., a Docker
container satisfying all hosting requirements mergedConds of the nodes in nodes), which
could then be included within the TOSCA application specification.

This step is “best-effort”. Namely, despite it looks for a Docker container satisfying
the hosting constraints mergedConds for each pair 〈nodes,mergedConds〉, it may happen
that such a container is not available. If this is the case, the step Best-effort adaptation
simply skips the corresponding pair, and it continues adapting the remaining ones. The
end-user is however informed by TosKeriser, which prints out a warning message for
each skipped pair.

Such behaviour is obtained by applying to each pair 〈nodes,mergedConds〉 the fol-
lowing three sub-steps (Fig. 8):

• The step Image Search exploits the hosting constraints in mergedConds to build
an appropriate query for DockerFinder and to invoke it. If DockerFinder
return an empty set of images of Docker containers, then the instance of the sub-
process terminates. This would indeed mean that it is not possible to automatically
determine a Docker container capable of satisfying the hosting requirements of all
the nodes in nodes. Otherwise, the set of images is passed to the step Image
Selection.

• The purpose of step Image Selection is to pick one out of the images of Docker con-
tainers returned by DockerFinder. The current prototype of TosKeriser either
automatically picks the first image returned by DockerFinder, or it permits man-
ually selecting the image among those returned by DockerFinder (depending on
the runtime configuration of TosKeriser— see Sect. 5.2).

• The step Adaptation finally includes the selected image of Docker container within
the TOSCA application specification by creating a new node of type tosker.no-
des.Container for modelling such container, and by adding all relationships mod-
elling that the nodes in nodes have to be hosted on the newly created node.

Finally, a new CSAR containing the completed TOSCA application specification is
returned by Best-effort adaptation, and hence by TosKeriser. An obtained CSAR
can then be run “as is” with any orchestration engine providing the needed support for
TOSCA and Docker (e.g., TosKer [7]), provided that all the requirements host of the
packaged TOSCA application specification have been fulfilled by appropriate containers.
This is because there is no need for further adaptation or configuration to be enacted.
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5.2. How to use TosKeriser

TosKeriser is currently implemented as a command-line tool, which can be actually
run by executing the following command:

$ toskerise FILE [COMPONENTS] [OPTIONS]

where FILE is the (YAML or CSAR) file containing the TOSCA application specification
to be completed. COMPONENTS is an optional list, which permits restricting the comple-
tion process to a subset of the software components contained in the input application
specification (by default, the completion process is applied to all software components).
OPTIONS is instead a list of additional options, which permit further customising the
execution of TosKeriser. Among all options that can be indicated, the following are
the most interesting:

--constraints The option --constraints permits customising the discovery of Docker
images by indicating additional constraints (e.g., by allowing to search for images
whose size is lower of 200MB).

--policy This option allows to indicate which images of Docker containers to privilege,
among all those that can satisfy the requirement host of a software component.
The policy top rated (default) privileges images best rated by Docker users, while
policies size and most used privilege smallest images and most pulled images,
respectively.

--interactive (or -i) This option allows users the manually select the image of the
Docker container to be used for satisfying the host requirement of a software com-
ponent, from a list that contains only the best images (according to the privileging
policy — see --policy).

--force (or -f) The option --force instructs TosKeriser to search for a new Docker
container for each considered component, even if the requirement host of such
component is already satisfied, viz., even if such requirement is already connected
to a container in the application specification. In other words, it instructs TosKe-
riser to ignore the condition f3 during the step Filter (see Sect. 5.1).

Example 4. Consider again the application Thinking in our motivating scenario, whose
corresponding TOSCA representation is displayed in Fig. 6. The CSAR file (thin-
king.csar) containing the TOSCA application specification of Thinking is publicly avail-
able on GitHub14. Such file can be automatically completed by executing the following
command:

$ toskerise thinking.csar --policy size

The above will generate a new CSAR file (thinking.completed.csar), which contains
the TOSCA specification of Thinking, whose topology is completed by including a new
Docker container, called AGContainer, which is used to host both API and GUI (Fig. 9,
lighter node). Such node provides the software support and the port mappings needed

14https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/

thinking_group.csar.

https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking_group.csar
https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/thinking_group.csar
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Figure 9: Application topology obtained by completing the partial topology of the application Thinking
(Fig. 4). Lighter nodes and relationships are those automatically included by TosKeriser.

by both API and GUI. We can then run such file with TosKer [7] (or with another
orchestration engine supporting both TOSCA and Docker), which will be capable of
automatically deploying and managing actual instances of the specified application.

Please note that we run TosKeriser with the option --policy size. The latter
instructs TosKeriser to concretely implement AGContainer with the smallest among
all images of Docker containers providing the needed software support. Suppose now that
we wish to change the container used to host GUI and API, e.g., because we now wish to
select the container that is most used by Docker users. We can run again TosKeriser
on the obtained specification, by setting the option -f to force TosKeriser to replace
the Docker container previously included in the specification:

$ toskerise thinking.completed.csar -f --policy most_used

This will result in replacing the Docker container implementing AGContainer by selecting
(among all images of Docker containers that can provide the software support needed by
API and GUI) the image that is most used by Docker users.

6. Case studies

We hereby present two case studies based on two different applications15. The first case
study is used to compare the initial effort required to deploy an application with and with-
out our solution, based on three KPIs (viz., lines of code to be added/changed/deleted,
files to be added/changed/deleted, and programming languages employed — Sect. 6.1).
The second case study is instead used to compare the effort for maintaining an exist-
ing, third-party application with and without our solution, based on the same KPIs

15The sources of the case studies and experiments reported in this section are publicly available online
at https://github.com/di-unipi-socc/toskeriser/tree/master/data/examples.

https://github.com/di-unipi-socc/toskeriser/tree/master/data/examples
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Figure 10: A specification of the topology of the PingPong application in TOSCA (where all relationships
are of type tosca.relationships.ConnectsTo).

(Sect. 6.2). We finally present an example illustrating the usefulness of using groups in
such case studies (Sect. 6.3).

6.1. First deployment of a new application

The objective of this first case study is to compare the effort required for performing the
first deployment of a newly developed application, with and without our solution. We
hence developed from scratch a toy application, called PingPong (which we publicly re-
leased on GitHub16). PingPong is composed by 3 interconnected components, viz., Ping,
Proxy and Pong. Ping is connected to Proxy, whose objective is to act as a proxy for all
requests sent to Pong, and which is hence connected to Pong. The behaviour of Ping-
Pong is as follows: Ping sends “ping” messages to Proxy, which forwards such messages
to Pong. The latter replies with “pong” messages, which are sent to Ping (by passing
through Proxy). Ping also provides a simple web-based interface allowing to start and
stop the ping-pong of messages.

The technical requirements of the components of PingPong are as follows. Ping is
implemented in JavaScript, it must be hosted on a runtime environment supporting
npm (version 5) and node (version 8), and it must be connected to Proxy. Proxy is
implemented in Go, it must be installed in a Docker container supporting go (version
1.8) and tar (any version), and it must be connected to Pong. Pong is implemented
in Python, and its runtime environment must support python (version 3), pip (any
version) and tar (any version). Additionally, to reduce the network traffic generated by
the components of PingPong, Proxy and Pong must be deployed on the same container,
while Ping can be hosted in a separate container.

First deployment. To compare the initial effort required to deploy a newly developed
application with and without our solution, we performed the deployment of PingPong
both with our TOSCA-based approach and with the support currently offered by Docker.

Our specification of PingPong in TOSCA is illustrated in Fig. 10. We modelled all
components as nodes of type tosker.nodes.Software, and we interconnected them with
relationships of type tosca.relationships.ConnectsTo. We also indicated all hosting re-
quirements in the requirements host of Ping, Proxy and Pong, and we specified the
deployment group ProxyPong. We also implemented 15 shell scripts for implementing

16https://github.com/di-unipi-socc/ping-pong.

https://github.com/di-unipi-socc/ping-pong
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KPI TosKeriser Docker-based

Lines of code 141 89
a:141,c:0,d:0 a:89,c:0,d:0

Files 16 3
a:16,c:0,d:0 a:3,c:0,d:0

Languages 2 3
TOSCA,bash Dockerfile,Docker Compose,bash

Table 1: Initial effort required to deploy the PingPong application with TosKeriser and with Docker.
The abbreviations a, c and d denote added, changed and deleted, respectively.

the management operations to install, configure, start, stop and delete each component.
We then exploited TosKeriser to automatically complete the obtained specification of
PingPong. This resulted in effectively completing the application specification, which we
successfully run with TosKer.

The Docker-based deployment of PingPong was instead implemented as follows. We
first wrote two Dockerfiles, one for installing Ping in a container offering the software
support it needs, and one for installing Proxy and Pong in a container offering the
software support they need. We then developed a Docker Compose file orchestrating
the deployment of the containers obtained from such Dockerfiles. The obtained Docker
Compose file was then successfully run with Docker.

Summary. Table 1 compares the effort required to perform the first deployment of the
PingPong application with and without our solution, in terms of the lines of code and files
to be added, changed and deleted, and of the programming languages to be employed.
The table highlights that the initial effort required by our solution is slightly higher (in
terms of lines of code and number of files) than that currently required by Docker. This
is mainly due to the fact that TOSCA requires to initially specify more information with
respect to Docker. Most of the bash commands contained in the shell scripts written for
the TOSCA-based deployment are indeed also contained in the Dockerfiles written for
the Docker-based deployment.

The higher amount of information to be initially provided may be perceived as a
drawback of our approach (and of TOSCA, as well), as it increases the initial effort for
deploying multi-component applications. However, it actually pays off while maintaining
an application (e.g., when the requirements of components change, or when we wish to
re-group the components of an application), as we will show in the next section.

6.2. Maintenance of a third-party, existing application

Sock Shop [28] is an open-source, service-based application. Sock Shop is publicly avail-
able on GitHub17, and it is maintained by Weaveworks (https://www.weave.works)
and Container Solutions (https://container-solutions.com) The application simu-
lates the user-facing part of an e-commerce website selling socks, and it is composed by
14 interconnected components.

17https://github.com/microservices-demo/microservices-demo.

https://www.weave.works
https://container-solutions.com
https://github.com/microservices-demo/microservices-demo
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Node Needed software distributions

Frontend npm (version 2.15), node (version 4), git (any version)
Catalogue go (version 1.7), git (any version)
Users go (version 1.7), git (any version)
Carts java (version 1.8)
Orders mvn (version 3), java (version 1.8), git (any version)
Payment go (version 1.7), git (any version)
Shipping java (version 1.8)

Table 2: Technical requirements of the main services in Sock Shop.

The main components of Sock Shop are a Frontend displaying a graphical user in-
terfaces for e-shopping socks, a set of pairs of services and databases for storing and
managing the catalogue of available socks (viz., Catalogue and CatalogueDB), the users
of the application (viz., Users and UsersDB), the users’ shopping carts (viz., Carts and
CartsDB), and the users’ orders (viz., Orders and OrdersDB), and two services for sim-
ulating the payment and shipping of orders (viz., Payment and Shipping). The technical
requirements of the above mentioned services are recapped in Table 2.

The Sock Shop application is then completed by three other components, namely
Edge Router, RabbitMQ and Queue Master. The Edge Router redirects user requests to
the Frontend. The RabbitMQ is a message queue that is filled of shipping requests by
the Shipping service. The shipping requests are then consumed by the Queue Master, to
simulate the actual shipping of orders.

As Sock Shop is intended to aid the demonstration and testing of solutions for orchestrat-
ing multi-component applications, we exploited it to compare the effort for maintaining
an existing, third-party application with and without our solution. More precisely, we
exploited it to measure the effort needed for addressing three subsequent changes in the
deployment of Sock Shop:

(i) Frontend requires a new version of npm,

(ii) Frontend and Catalogue must be installed in the same container, and

(iii) Orders, Users and Carts must be installed in the same container.

While the Docker-based deployment of Sock Shop was already available in its GitHub
repository18, we had to develop from scratch its specification with our TOSCA-based
representation. Our specification of Sock Shop in TOSCA is illustrated in Fig. 11 and it
is publicly available on GitHub19. We modelled all databases and infrastructure compo-
nents as nodes of type tosker.nodes.Container, and we exploited the Docker containers
already configured by Weaveworks to actually implement them. We instead specified
the services Frontend, Catalogue, Users, Carts, Orders, Payment and Shipping as nodes
of type tosker.nodes.Software, each having a pending requirement host that specifies
the hosting constraints of the node (Table 2). We also developed 25 shell scripts for

18https://github.com/microservices-demo/microservices-demo/tree/master/deploy/

docker-compose.
19https://github.com/di-unipi-socc/TosKeriser/tree/master/data/examples/sockshop-app.

https://github.com/microservices-demo/microservices-demo/tree/master/deploy/docker-compose
https://github.com/microservices-demo/microservices-demo/tree/master/deploy/docker-compose
https://github.com/di-unipi-socc/TosKeriser/tree/master/data/examples/sockshop-app
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Figure 11: A specification of the topology of Sock Shop in TOSCA (where all relationships are of type
tosca.relationships.ConnectsTo).

implementing the management operations offered by Frontend, Catalogue, Users, Carts,
Orders, Payment and Shipping20. We then completed the specification of Sock Shop with
TosKeriser, and we successfully run the completed specification with TosKer.

Table 3 recaps the initial values of the KPIs we consider for the Sock Shop application.
The specification of Sock Shop with our approach required us to manually write 303 lines
of code in 26 different files, by exploiting 2 different languages (TOSCA and bash). The
already available Docker-based deployment of Sock Shop instead counts 268 lines of code

20The management operations of a component have to be implemented by an associated artifact only
when the component actually needs such operations [22]. For instance, as Users does not require to be
configured, we do not need to develop a script for implementing its management operation configure.
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KPI TosKeriser Docker-based

Lines of code 303 268
Files 26 8

Languages 2 3
TOSCA,bash Dockerfile,Docker Compose,bash

Table 3: Values of the considered KPIs for the the initial deployment of Sock Shop with TosKeriser,
and for its already existing Docker-based deployment.

KPI TosKeriser Docker-based

Lines of code 1 1
a:0,c:1,d:0 a:0,c:1,d:0

Files 1 1
a:0,c:1,d:0 a:0,c:1,d:0

Languages 1 2
TOSCA Dockerfile,bash

Table 4: Effort required to update the deployment of the Sock Shop application, in order to provide its
Frontend with the new version of npm it requires. The abbreviations a, c and d denote added, changed
and deleted, respectively.

in 8 different files, by exploiting 3 different languages (Dockerfile, Docker Compose and
bash). This confirms that the initial effort with our approach is higher. At the same
time, it is important to observe that the differences between our approach and that
based on Docker here are relatively lower (with respect to the case of PingPong). This is
because the impact of the additional information to be provided with our TOSCA-based
representation is lowered by the higher amount of bash commands needed to install the
services forming Sock Shop, which are contained both in the shell script implementing the
management operations in our solutions and in the Dockerfiles required by the Docker-
based deployment.

Case (i). We first considered the case of a component requiring to upgrade the software
support provided by the container hosting it, which is a frequent issue while maintaining
in multi-component applications [20]. We considered the case of Frontend requiring to
upgrade the version of npm supported by its hosting container from 2.15 to 3.10. We
then compared the effort required to update the deployment based on our approach and
that based on the support currently provided by Docker.

Our approach allowed us to update the TOSCA-based representation of Sock Shop by
simply replacing the constraint on npm in the requirement host of Frontend, viz., npm:
2.15.x was replaced by npm: 3.10.x. The update in the Docker-based deployment
instead required us to manually change the Dockerfile installing Frontend in its container.
More precisely, it required us to add the a new line instructing to upgrade the npm version
supported by the container, viz.,

RUN npm i npm@3.10 -g

at the beginning of the Dockerfile of Frontend. The corresponding efforts (in terms of
the three KPIs we consider) is reported in Table 4.
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KPI TosKeriser Docker-based

Lines of code 4 176
a:4,c:0,d:0 a:114,c:4,d:58

Files 1 4
a:0,c:1,d:0 a:1,c:1,d:2

Languages 1 3
TOSCA Dockerfile,Docker Compose,bash

Table 5: Effort required to update the deployment of the Sock Shop application, in order to deploy
Frontend and Catalogue within the same container. The abbreviations a, c and d denote added, changed
and deleted, respectively.

Both updates led to runnable instances of Sock Shop, with the desired, updated
support for its Frontend. Although they were also similar in terms of the considered KPIs,
by looking at the concrete changes that we performed, we can already appreciate some
concrete differences. To update the specification of Sock Shop, our approach required us
to change the actual value assigned to a pre-existing constraint (and the Docker container
providing the desired version of npm was then automatically determined). To update the
Docker-based specification of Sock Shop, we instead had to manually look for the bash
command allowing to upgrade the distribution of npm, and to insert such command in
the Dockerfile of Frontend in such a way that the desired version of npm is available when
needed. In the latter case, we were also required to manually check that no conflicts were
generated by the newly inserted command.

Case (ii). We then considered the case of being required to deploy two different com-
ponents in the same container, e.g., to reduce the network traffic generated by the com-
ponents of Sock Shop. We focused on grouping Frontend and Catalogue, as the former
often interacts with the latter to display the socks available in the e-shop.

We added the group to our TOSCA-based representation of Sock Shop by defining
a group of type tosker.groups.DeploymentUnit. More precisely, we added the following
lines at the end of the specification of Sock Shop:

groups:

my_group1:

type: tosker.groups.DeploymentUnit

members: [ front-end, catalogue ]

We then run TosKeriser (with the option -f set), and we obtained an updated specifi-
cation hosting Frontend and Catalogue on the same container (providing all the software
support they need).

We instead updated the Docker-based deployment of Sock Shop by deleting the Dock-
erfiles installing Frontend and Catalogue, and by creating a new Dockerfile installing
both components in an appropriate container. We then updated the Docker Compose
file specifying the orchestration of the containers of Sock Shop, which had to refer the
newly created Dockerfile instead of the deleted ones.

Despite both updates led to runnable instances of Sock Shop (with Frontend and
Catalogue grouped together), the effort required by our approach was by far lower with



6 CASE STUDIES 23

respect to that required by the Docker-based deployment (Table 5). This is even more
evident if we compare the lines and files changed with those of the initial specification
(Table 3). With our approach, we reuse 100% of the lines and files we already wrote, as
we only add 4 lines to 1 file. The update to the Docker-based deployment instead has
a much higher impact and it experiences a much lower reuse, as the initial deployment
counts 268 lines of code distributed over 8 files, and since we had to edit 176 lines of
code over 4 files. Additionally, while with our approach we were required to only work
with the TOSCA language, the update to the Docker-based deployment required us to
work with three different languages.

Case (iii). We finally considered the grouping of Orders, Users and Carts, which we
wished to install within the same container, and we compared the effort required to
perform the corresponding update with our approach and with the support currently
provided by Docker.

We updated our TOSCA-based representation of Sock Shop by adding a group of
type tosker.groups.DeploymentUnit, viz., by adding the following lines at the end of the
specification of Sock Shop:

my_group2:

type: tosker.groups.DeploymentUnit

members: [ orders, user, carts ]

By running TosKeriser (with the option -f set), we discovered that there were conflict-
ing requirements on the port mappings required by the grouped components. We hence
had to change 6 other lines of our specification for reconfiguring the port mappings in
order to avoid the discovered conflicts. We then re-run TosKeriser (with the option
-f set) and we obtained an updated specification hosting the three components on the
same container (providing all the software support they need).

The update to the Docker-based deployment instead required us much more effort.
We had to delete the Dockerfiles installing Orders, Users and Carts, and to create a new
Dockerfile installing the three components in a container providing the needed support.
In doing so, we had to manually manage the issues due to conflicting port mappings
(already known thanks to the above mentioned run of TosKeriser), by configuring
Orders, Users and Carts to listen on different ports of their container. This required us
also to update the Dockerfile packaging Frontend and Catalogue in a container, to allow
such components to connect to the newly configured Orders, Users and Carts. We finally
had to update the Docker Compose file specifying the orchestration of the containers of
Sock Shop, which had to refer the newly created Dockerfile instead of the deleted ones.

Table 6 illustrates the measured effort for performing both above mentioned updates,
in terms of lines of code and files to be added, changed and deleted, and of languages
to be employed. The table highlights how case (iii) is another example showing that the
maintenance effort with our approach is much lower than that without our approach.
What we can observe is indeed very similar to the case of grouping Frontend and Cata-
logue. Additionally, while TosKeriser automatically discovers conflicting requirements,
the same does not hold for the support currently provided by Docker.

Summary. Finally, consider the effort required by three changes together (Table 7). Our
approach required us to overall edit 14 lines of code, by only touching the file containing
the TOSCA application specification. The impact on the initial specification was hence
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KPI TosKeriser Docker-based

Lines of code 9 164
a:3,c:6,d:0 a:100,c:0,d:64

Files 1 4
a:0,c:1,d:0 a:1,c:2,d:3

Languages 1 3
TOSCA Dockerfile,Docker Compose,bash

Table 6: Effort required to update the deployment of the Sock Shop application, in order to deploy
Orders, Users and Carts within the same container. The abbreviations a, c and d denote added, changed
and deleted, respectively.

minimum, as the latter consisted in writing 303 lines of code distributed over 26 different
files. The effort required by the Docker-based deployment was instead highly impacting
on the initial specification. Indeed, while the initial specification consisted of 268 lines
of code distributed over 8 files, we were required to edit 341 lines of code over 9 files.

KPI TosKeriser Docker-based

Lines of code 14 341
a:7,c:7,d:0 a:215,c:4,d:112

Files 1 9
a:0,c:1,d:0 a:2,c:2,d:5

Languages 1 3
TOSCA Dockerfile,Docker Compose,bash

Table 7: Overall effort for updating the deployment of Sock Shop, in order to address cases (i), (ii) and
(iii). The abbreviations a, c and d denote added, changed and deleted, respectively.

We can hence observe that despite our approach required us a slightly higher effort
for developing the initial specification of Sock Shop, such effort actually paid off by the
maintainability of the obtained specification.

6.3. On groups

How to group the components forming an application depends on the governance of the
application itself. For instance, as the performances (in terms of delay and throughput)
of Docker networking are low on average [29], we may wish to reduce the network traffic
generated by the components of an application. Grouping can help reducing the the
network traffic generated by the components of an application, as shown by the following
experiments on the applications PingPong and Sock Shop.

PingPong. We measured the network traffic generated by the containers running com-
ponents of PingPong for processing 100 “ping” requests. More precisely, we run PingPong
with two different configurations, one with each component in a different container, and
one grouping Proxy and Pong in a single container (with Ping in a separate container).
For both deployments, we iterated 50 times a test executing 100 “ping” requests, and
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Figure 12: Average network traffic (a) transmitted and (b) received by the components of PingPong for
processing 100 “ping” requests. Darker histograms plot the values for a deployment of PingPong with
each component in a separate container, while lighter histograms plot the values for a deployment of
PingPong with the components Proxy and Pong hosted in the same container.

we measured the network traffic generated by the containers running the components of
PingPong for each iteration.

Fig. 12 shows the average network traffic transmitted by the containers running the
components of PingPong for executing the above illustrated test. While the network
traffic of Ping keeps stable in both deployments, by grouping Proxy and Pong in a
single container, we effectively reduced the average network traffic generated by the
containers running the components of PingPong. The average network traffic generated
by the deployment with one component per container was indeed 532.84 KBs (270.45 KBs
transmitted, 262.39 KBs received), while that of the deployment with Proxy and Pong in
the same container was 285.90 KBs (147.60 KBs transmitted, 138.30 KBs received). This
means that by hosting Proxy and Ping on the same container we reduced the average
network traffic of around 46%.

Sock Shop. We also prepared a test for comparing the network traffic generated by two
different deployments of SockShop, viz., its default deployment (with each component in
a separate container), and the deployment obtained at the end of the case study discussed
in Sect. 6.2 (with two groups placing Frontend and Catalogue in one container, and Carts,
Users and Orders in another single container). Each test consisted in executing an end-
to-end test of Sock Shop21, which simulates an end-user interacting with the web-based
interface of Sock Shop to perform an order of a given pair of socks. We repeated such
test 50 times for both deployments, to measure the average network traffic transmitted
by the containers running the components of Sock Shop.

Table 8 shows the average network traffic transmitted and received by the containers
running the main components of Sock Shop, in the two different deployments discussed
above. By introducing the groups Frontend-Catalogue and Orders-Users-Carts, we effec-
tively managed to reduce the average network traffic generated by the internals of Sock
Shop of around 14%. This is mainly thanks to the reduction of the traffic generated by
the containers running the grouped components (which can be observed in Fig. 13).

21https://github.com/di-unipi-socc/e2e-tests.

https://github.com/di-unipi-socc/e2e-tests
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Transmitted Received
(KBs) (KBs)

Carts 31.01 24.93
CartsDB 17.97 15.61
Catalogue 106.50 5672.96

CatalogueDB 18.87 48.95
Frontend 6266.88 66058.24
Orders 48.77 65.70

OrdersDB 6.78 37.85
Payment 6.34 0.51
Shipping 6.30 0.92

Users 33.53 28.71
UsersDB 18.11 18.69

(a)

Transmitted Received
(KBs) (KBs)

CartsDB 18.25 15.00
CatalogueDB 18.53 49.20

Frontend-Catalogue 629.56 66334.72
Orders-Users-Carts 82.48 91.45

OrdersDB 6.70 23.63
Payment 6.33 0.51
Shipping 6.16 0.93
UsersDB 17.64 18.54

(b)

Table 8: Average network traffic of the containers running the main components of Sock Shop for 10
iterations of end-to-end test on (a) the default deployment of Sock Shop and (b) a deployment grouping
Frontend and Catalogue, and Orders, Users and Carts.

Summary. The above reported experiments showed that the network traffic generated
by the containers running the components of both PingPong and Sock Shop was effectively
reduced by grouping multiple components in a single container.

7. Related work

We presented a solution for automatically completing TOSCA specifications, which is
much in the spirit of [16]. The goal of [16] is indeed to reduce the effort paid by
TOSCA delevopers, by allowing them create incomplete application topologies, which
then have to be automatically completed. Developers can focus on modelling the com-
ponents that are specific to their applications, by also indicating the types of nodes
needed to host them (e.g., a web server or a DBMS). The solution proposed by [16]
automatically adds nodes and relationships to an incomplete TOSCA specification, in
order to build the software stack needed to run each of its component. Such nodes and
relationships are taken from a finite alphabet of supported node/relationship types, and
a manual refinement step is foreseen for developers to specify the configuration of the
nodes automatically included in their topologies. However, the approach presented
in [16] only checks type-compatibility between specified nodes and those automatically
included to form their runtime environments. We instead allow developers to impose
additional constraints on the nodes that can be used to host a component (e.g., by al-
lowing to indicate that an application component requires a certain software support on
a certain operating system distribution). Additionally, our solution does not require
further adaptation/configuration of the Docker containers automatically included in an
application.

Other approaches worth mentioning are [8], [9] and [26], whose goal is however dif-
ferent from ours. They indeed focus on allowing to reuse portions of existing TOSCA
applications while developing new applications. This means that [8], [9] and [26] can still
be used to automatically determine the runtime environment needed by the components
of TOSCA applications. They indeed allow to abstractly specify desired nodes, and they
can determine actual implementations for such nodes by matching and adapting existing
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Figure 13: Average network traffic (a) transmitted and (b) received by the containers running the
grouped components of Sock Shop executing its end-to-end test. Darker histograms plot the values for
a deployment of Sock Shop with each component in a separate container, while lighter histograms plot
the values for a deployment of Sock Shop with the groups Frontend-Catalogue and Orders-Users-Carts.
Values are displayed by exploiting a logarithmic scale on the y-axis.

TOSCA application specifications. [8], [9] and [26] however differ from our approach as
they look for type-compatible solutions, without constraining the actual values that can
be assigned to a property (hence not allowing to indicate the software support that must
be provided by a Docker container, for instance).

If we broaden our view beyond TOSCA, we can identify various other efforts that have
been recently oriented to try devising systematic approaches to adapt multi-component
applications to work with heterogeneous cloud platforms. For instance, [12] and [15]
propose two approaches to transform platform-agnostic source code of applications into
platform-specific applications. In contrast, our approach does not require the availabil-
ity of the source code of an application, and it is hence applicable also to third-party
components whose source code is not available nor open.

[14] proposes a framework allowing developers to write the source code of cloud appli-
cations as if they were “on-premise” applications. [14] is similar to our approach, since,
based on cloud deployment information (specified in a separate file), it automatically
generates all artefacts needed to deploy and manage an application on a cloud platform.
[14] however differs from our approach, as artefacts must be (re-)generated whenever
an application is moved to a different platform, and since the obtained artefacts must
be manually orchestrated on such platform. Our approach instead produces portable
TOSCA application specifications, which can be automatically orchestrated by engines
supporting both TOSCA and Docker (e.g., TosKer [7]).

In general, most existing approaches to the reuse of cloud applications support a
from-scratch development of cloud-agnostic applications, and do not account for the
possibility of adapting existing (third-party) components. To the best of our knowledge,
ours is the first approach for adapting existing multi-component applications to work with
heterogeneous cloud platforms, by relying on a natural combination of two standards
(viz., TOSCA [22] and Docker) to achieve cloud interoperability. TOSCA is indeed
exploited to specify the orchestration of multi-component applications in a cloud-agnostic
manner, for which it has proven abilities [3, 21]. Docker is instead exploited to standardise
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the virtual runtime environments of the components forming an application to Linux-
based containers, which are portable and widely supported by cloud platforms (as Docker
is the de-facto standard for container-based virtualisation [24]).

8. Conclusions

Cloud applications typically consist of multiple heterogeneous components, whose deploy-
ment, configuration, enactment and termination must be suitably orchestrated [13]. This
is currently done manually, by requiring developers to manually select and configure an
appropriate runtime environment for each component in an application, and to explicitly
describe how to orchestrate such components on top of the selected environments.

In this paper, we have presented a solution for enhancing the current support for or-
chestrating the management of cloud applications, based on TOSCA and Docker. More
precisely, we have proposed a TOSCA-based representation for multi-component appli-
cations, which allows developers to describe only the components forming an application,
the dependencies among such components, and the software support needed by each com-
ponent. We have also presented a tool (called TosKeriser), which can automatically
complete the TOSCA specification of a multi-component application, by discovering and
configuring the Docker containers needed to host its components.

The obtained application specifications can then be processed by orchestration en-
gines supporting TOSCA and Docker, like TosKer [7], which can process specifications
produced by TosKeriser, to automatically orchestrate the deployment and manage-
ment of the corresponding applications.

TosKeriser is integrated with DockerFinder [6], and it produces specifications that
can be effectively processed by TosKer [7]. TosKeriser, DockerFinder and Tos-
Ker are all open-source prototypes, and their ensemble provides a first support for
automating the orchestration of multi-component applications with TOSCA and Docker.
Future work on this ensemble regards its engineering. In this perspective, we plan to
evaluate and improve the performances of each tool (TosKeriser, DockerFinder and
TosKer) and of their ensemble as well.

We also plan to further extend the open-source ensemble composed by TosKeriser,
DockerFinder and TosKer, to pave the way towards the development of a full-fledged,
open-source support for orchestrating multi-component applications with TOSCA and
Docker. In this direction, it is worth highlighting that despite DockerFinder can
provide information on all Docker images available on Docker Hub, it may be the case
that no existing image is providing the combination of software support and operating
system distribution needed by a group of application components. This would hence
impede TosKeriser to complete the TOSCA application specification containing such
group of components. A tool supporting the creation of ad-hoc images (configured from
scratch, if needed) would permit overcoming this limitation. The development of such
tool and its integration with TosKeriser are in the scope of our future work.

Another interesting direction for future work is to investigate whether existing ap-
proaches for reusing fragments of TOSCA applications (e.g., ToscaMart [26]) can be
included in TosKeriser. This would permit completing TOSCA specifications by host-
ing the components of an application not only on single Docker containers, but also on
software stacks already employed in other existing solutions.
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Another interesting direction is to integrate our open source environment TosKeri-
ser and TosKer with existing approaches allowing to determine the optimal deployment
of multi-component applications on virtual infrastructures (such as Zephyrus [1], for
instance). The output of TosKeriser could indeed be provided as input to a tool
like Zephyrus, along with a description of the virtual machines where the application
components can run and a set of deployment constraints (e.g., desired number of replicas
of each component, co-installation requirements, conflicting components, etc.). Zephyrus
could automatically determine an optimal application deployment of the application
components on the available infrastructure.
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